These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 38132556)

  • 41. Corneal stromal regeneration by hybrid oriented poly (ε-caprolactone)/lyophilized silk fibroin electrospun scaffold.
    Orash Mahmoud Salehi A; Nourbakhsh MS; Rafienia M; Baradaran-Rafii A; Heidari Keshel S
    Int J Biol Macromol; 2020 Oct; 161():377-388. PubMed ID: 32526297
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Extrusion-based 3D printing of poly(propylene fumarate) scaffolds with hydroxyapatite gradients.
    Trachtenberg JE; Placone JK; Smith BT; Fisher JP; Mikos AG
    J Biomater Sci Polym Ed; 2017 Apr; 28(6):532-554. PubMed ID: 28125380
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Assessment of Electrospun Poly(ε-caprolactone) and Poly(lactic acid) Fiber Scaffolds to Generate 3D In Vitro Models of Colorectal Adenocarcinoma: A Preliminary Study.
    Ricci C; Azimi B; Panariello L; Antognoli B; Cecchini B; Rovelli R; Rustembek M; Cinelli P; Milazzo M; Danti S; Lazzeri A
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298394
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Three dimensionally printed pearl powder/poly-caprolactone composite scaffolds for bone regeneration.
    Zhang X; Du X; Li D; Ao R; Yu B; Yu B
    J Biomater Sci Polym Ed; 2018 Oct; 29(14):1686-1700. PubMed ID: 29768120
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bioactive calcium silicate/poly-ε-caprolactone composite scaffolds 3D printed under mild conditions for bone tissue engineering.
    Lin YH; Chiu YC; Shen YF; Wu YA; Shie MY
    J Mater Sci Mater Med; 2017 Dec; 29(1):11. PubMed ID: 29282550
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nanotopographical 3D-Printed Poly(ε-caprolactone) Scaffolds Enhance Proliferation and Osteogenic Differentiation of Urine-Derived Stem Cells for Bone Regeneration.
    Xing F; Yin HM; Zhe M; Xie JC; Duan X; Xu JZ; Xiang Z; Li ZM
    Pharmaceutics; 2022 Jul; 14(7):. PubMed ID: 35890332
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mussel-inspired polydopamine-mediated surface modification of freeze-cast poly (ε-caprolactone) scaffolds for bone tissue engineering applications.
    Ghorbani F; Zamanian A; Sahranavard M
    Biomed Tech (Berl); 2020 May; 65(3):273-287. PubMed ID: 31655791
    [TBL] [Abstract][Full Text] [Related]  

  • 49. 3D printed hybrid bone constructs of PCL and dental pulp stem cells loaded GelMA.
    Buyuksungur S; Hasirci V; Hasirci N
    J Biomed Mater Res A; 2021 Dec; 109(12):2425-2437. PubMed ID: 34033241
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 3D printed macroporous scaffolds of PCL and inulin-g-P(D,L)LA for bone tissue engineering applications.
    Tommasino C; Auriemma G; Sardo C; Alvarez-Lorenzo C; Garofalo E; Morello S; Falcone G; Aquino RP
    Int J Pharm; 2023 Jun; 641():123093. PubMed ID: 37268029
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Engineered Nanotopography on the Microfibers of 3D-Printed PCL Scaffolds to Modulate Cellular Responses and Establish an
    Jing L; Wang X; Leng B; Zhan N; Liu H; Wang S; Lu Y; Sun J; Huang D
    ACS Appl Bio Mater; 2021 Feb; 4(2):1381-1394. PubMed ID: 35014489
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Three-Dimensional Printing of Customized Scaffolds with Polycaprolactone-Silk Fibroin Composites and Integration of Gingival Tissue-Derived Stem Cells for Personalized Bone Therapy.
    Bojedla SSR; Yeleswarapu S; Alwala AM; Nikzad M; Masood SH; Riza S; Pati F
    ACS Appl Bio Mater; 2022 Sep; 5(9):4465-4479. PubMed ID: 35994743
    [TBL] [Abstract][Full Text] [Related]  

  • 53. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.
    Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A novel fibrous scaffold composed of electrospun porous poly (epsilon-caprolactone) fibers for bone tissue engineering.
    Nguyen TH; Bao TQ; Park I; Lee BT
    J Biomater Appl; 2013 Nov; 28(4):514-28. PubMed ID: 23075833
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synthesis, Nanomechanical Characterization and Biocompatibility of a Chitosan-Graft-Poly(ε-caprolactone) Copolymer for Soft Tissue Regeneration.
    Charitidis CA; Dragatogiannis DA; Milioni E; Kaliva M; Vamvakaki M; Chatzinikolaidou M
    Materials (Basel); 2019 Jan; 12(1):. PubMed ID: 30621234
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 3D printing of silk microparticle reinforced polycaprolactone scaffolds for tissue engineering applications.
    Vyas C; Zhang J; Øvrebø Ø; Huang B; Roberts I; Setty M; Allardyce B; Haugen H; Rajkhowa R; Bartolo P
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111433. PubMed ID: 33255027
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications.
    Xia Y; Zhou P; Cheng X; Xie Y; Liang C; Li C; Xu S
    Int J Nanomedicine; 2013; 8():4197-213. PubMed ID: 24204147
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of scaffold mean pore size in meniscus regeneration.
    Zhang ZZ; Jiang D; Ding JX; Wang SJ; Zhang L; Zhang JY; Qi YS; Chen XS; Yu JK
    Acta Biomater; 2016 Oct; 43():314-326. PubMed ID: 27481291
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of porosity and pore size on microstructures and mechanical properties of poly-epsilon-caprolactone- hydroxyapatite composites.
    Yu H; Matthew HW; Wooley PH; Yang SY
    J Biomed Mater Res B Appl Biomater; 2008 Aug; 86(2):541-7. PubMed ID: 18335434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.