BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38132674)

  • 1. A KL Divergence-Based Loss for In Vivo Ultrafast Ultrasound Image Enhancement with Deep Learning.
    Viñals R; Thiran JP
    J Imaging; 2023 Nov; 9(12):. PubMed ID: 38132674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CNN-Based Image Reconstruction Method for Ultrafast Ultrasound Imaging.
    Perdios D; Vonlanthen M; Martinez F; Arditi M; Thiran JP
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1154-1168. PubMed ID: 34847025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving Image Quality for Single-Angle Plane Wave Ultrasound Imaging With Convolutional Neural Network Beamformer.
    Lu JY; Lee PY; Huang CC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1326-1336. PubMed ID: 35175918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasound image reconstruction from plane wave radio-frequency data by self-supervised deep neural network.
    Zhang J; He Q; Xiao Y; Zheng H; Wang C; Luo J
    Med Image Anal; 2021 May; 70():102018. PubMed ID: 33711740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A robust cascaded deep neural network for image reconstruction of single plane wave ultrasound RF data.
    Wasih M; Ahmad S; Almekkawy M
    Ultrasonics; 2023 Jul; 132():106981. PubMed ID: 36913830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Spatial-Temporal Resolution Reconstruction of Plane-Wave Ultrasound Images With a Multichannel Multiscale Convolutional Neural Network.
    Zhou Z; Wang Y; Yu J; Guo Y; Guo W; Qi Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Nov; 65(11):1983-1996. PubMed ID: 30113895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast Cardiac Imaging Using Deep Learning for Speckle-Tracking Echocardiography.
    Lu J; Millioz F; Varray F; Poree J; Provost J; Bernard O; Garcia D; Friboulet D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Dec; 70(12):1761-1772. PubMed ID: 37862280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Quality Plane Wave Compounding Using Convolutional Neural Networks.
    Gasse M; Millioz F; Roux E; Garcia D; Liebgott H; Friboulet D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Oct; 64(10):1637-1639. PubMed ID: 28792894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction for plane-wave ultrasound imaging using modified U-Net-based beamformer.
    Nguon LS; Seo J; Seo K; Han Y; Park S
    Comput Med Imaging Graph; 2022 Jun; 98():102073. PubMed ID: 35561639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplane wave imaging increases signal-to-noise ratio in ultrafast ultrasound imaging.
    Tiran E; Deffieux T; Correia M; Maresca D; Osmanski BF; Sieu LA; Bergel A; Cohen I; Pernot M; Tanter M
    Phys Med Biol; 2015 Nov; 60(21):8549-66. PubMed ID: 26487501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dose reduction and image enhancement in micro-CT using deep learning.
    Muller FM; Maebe J; Vanhove C; Vandenberghe S
    Med Phys; 2023 Sep; 50(9):5643-5656. PubMed ID: 36994779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlocal total variation based on symmetric Kullback-Leibler divergence for the ultrasound image despeckling.
    Liang S; Yang F; Wen T; Yao Z; Huang Q; Ye C
    BMC Med Imaging; 2017 Nov; 17(1):57. PubMed ID: 29179695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast Plane Wave Imaging With Line-Scan-Quality Using an Ultrasound-Transfer Generative Adversarial Network.
    Zhou Z; Wang Y; Guo Y; Jiang X; Qi Y
    IEEE J Biomed Health Inform; 2020 Apr; 24(4):943-956. PubMed ID: 31675348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitigation of motion-induced artifacts in cone beam computed tomography using deep convolutional neural networks.
    Amirian M; Montoya-Zegarra JA; Herzig I; Eggenberger Hotz P; Lichtensteiger L; Morf M; Züst A; Paysan P; Peterlik I; Scheib S; Füchslin RM; Stadelmann T; Schilling FP
    Med Phys; 2023 Oct; 50(10):6228-6242. PubMed ID: 36995003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-supervised structural similarity-based convolutional neural network for cardiac diffusion tensor image denoising.
    Yuan N; Wang L; Ye C; Deng Z; Zhang J; Zhu Y
    Med Phys; 2023 Oct; 50(10):6137-6150. PubMed ID: 36775901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PerceptFlow: Real-Time Ultrafast Doppler Image Enhancement Using Deep Convolutional Neural Network and Perceptual Loss.
    Blons M; Deffieux T; Osmanski BF; Tanter M; Berthon B
    Ultrasound Med Biol; 2023 Jan; 49(1):225-236. PubMed ID: 36244920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic MR image quality evaluation using a Deep CNN: A reference-free method to rate motion artifacts in neuroimaging.
    Fantini I; Yasuda C; Bento M; Rittner L; Cendes F; Lotufo R
    Comput Med Imaging Graph; 2021 Jun; 90():101897. PubMed ID: 33770561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 40 MHz high-frequency ultrafast ultrasound imaging.
    Huang CC; Chen PY; Peng PH; Lee PY
    Med Phys; 2017 Jun; 44(6):2185-2195. PubMed ID: 28369938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness.
    Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ
    Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A performance comparison of convolutional neural network-based image denoising methods: The effect of loss functions on low-dose CT images.
    Kim B; Han M; Shim H; Baek J
    Med Phys; 2019 Sep; 46(9):3906-3923. PubMed ID: 31306488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.