These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 38132758)
1. Kernel Bioassay Evaluation of Maize Ear Rot and Genome-Wide Association Analysis for Identifying Genetic Loci Associated with Resistance to Zhang J; Shi H; Yang Y; Zeng C; Jia Z; Ma T; Wu M; Du J; Huang N; Pan G; Li Z; Yuan G J Fungi (Basel); 2023 Dec; 9(12):. PubMed ID: 38132758 [TBL] [Abstract][Full Text] [Related]
2. Genome-Wide Association Study Discovers Novel Germplasm Resources and Genetic Loci with Resistance to Gibberella Ear Rot Caused by Yuan G; He D; Shi J; Li Y; Yang Y; Du J; Zou C; Ma L; Gao S; Pan G; Shen Y Phytopathology; 2023 Jul; 113(7):1317-1324. PubMed ID: 36721376 [TBL] [Abstract][Full Text] [Related]
3. A Combination of QTL Mapping and GradedPool-Seq to Dissect Genetic Complexity for Gibberella Ear Rot Resistance in Maize Using an IBM Syn10 DH Population. Yuan G; Li Y; He D; Shi J; Yang Y; Du J; Zou C; Ma L; Pan G; Shen Y Plant Dis; 2023 Apr; 107(4):1115-1121. PubMed ID: 36131495 [TBL] [Abstract][Full Text] [Related]
4. Genome-wide association study and molecular marker development for susceptibility to Gibberella ear rot in maize. Zhou G; Ma L; Zhao C; Xie F; Xu Y; Wang Q; Hao D; Gao X Theor Appl Genet; 2024 Sep; 137(10):222. PubMed ID: 39276212 [TBL] [Abstract][Full Text] [Related]
5. Transcriptome profiling of two maize inbreds with distinct responses to Gibberella ear rot disease to identify candidate resistance genes. Kebede AZ; Johnston A; Schneiderman D; Bosnich W; Harris LJ BMC Genomics; 2018 Feb; 19(1):131. PubMed ID: 29426290 [TBL] [Abstract][Full Text] [Related]
6. Mapping and Validation of a Stable Quantitative Trait Locus Conferring Maize Resistance to Gibberella Ear Rot. Zhou G; Li S; Ma L; Wang F; Jiang F; Sun Y; Ruan X; Cao Y; Wang Q; Zhang Y; Fan X; Gao X Plant Dis; 2021 Jul; 105(7):1984-1991. PubMed ID: 33616427 [TBL] [Abstract][Full Text] [Related]
7. Exploiting genetic diversity in two European maize landraces for improving Gibberella ear rot resistance using genomic tools. Gaikpa DS; Kessel B; Presterl T; Ouzunova M; Galiano-Carneiro AL; Mayer M; Melchinger AE; Schön CC; Miedaner T Theor Appl Genet; 2021 Mar; 134(3):793-805. PubMed ID: 33274402 [TBL] [Abstract][Full Text] [Related]
8. Meta-analysis and co-expression analysis revealed stable QTL and candidate genes conferring resistances to Fusarium and Gibberella ear rots while reducing mycotoxin contamination in maize. Akohoue F; Miedaner T Front Plant Sci; 2022; 13():1050891. PubMed ID: 36388551 [TBL] [Abstract][Full Text] [Related]
9. Integrated analysis of transcriptomics and defense-related phytohormones to discover hub genes conferring maize Gibberella ear rot caused by Fusarium Graminearum. Yuan G; Shi J; Zeng C; Shi H; Yang Y; Zhang C; Ma T; Wu M; Jia Z; Du J; Zou C; Ma L; Pan G; Shen Y BMC Genomics; 2024 Jul; 25(1):733. PubMed ID: 39080512 [TBL] [Abstract][Full Text] [Related]
10. Genome-wide association study of Fusarium ear rot disease in the U.S.A. maize inbred line collection. Zila CT; Ogut F; Romay MC; Gardner CA; Buckler ES; Holland JB BMC Plant Biol; 2014 Dec; 14():372. PubMed ID: 25547028 [TBL] [Abstract][Full Text] [Related]
11. Effectiveness of introgression of resistance loci for Gibberella ear rot from two European flint landraces into adapted elite maize (Zea mays L.). Akohoue F; Koch S; Lieberherr B; Kessel B; Presterl T; Miedaner T PLoS One; 2023; 18(9):e0292095. PubMed ID: 37756342 [TBL] [Abstract][Full Text] [Related]
12. A Genome Wide Association Study Reveals Markers and Genes Associated with Resistance to Stagnati L; Lanubile A; Samayoa LF; Bragalanti M; Giorni P; Busconi M; Holland JB; Marocco A G3 (Bethesda); 2019 Feb; 9(2):571-579. PubMed ID: 30567831 [No Abstract] [Full Text] [Related]
13. Quantitative trait loci mapping for Gibberella ear rot resistance and associated agronomic traits using genotyping-by-sequencing in maize. Kebede AZ; Woldemariam T; Reid LM; Harris LJ Theor Appl Genet; 2016 Jan; 129(1):17-29. PubMed ID: 26643764 [TBL] [Abstract][Full Text] [Related]
14. Impact of Gibberella Ear Rot on Grain Quality and Yield Components in Maize as Influenced by Hybrid Reaction. Lana FD; Madden LV; Carvalho CP; Paul PA Plant Dis; 2022 Dec; 106(12):3061-3075. PubMed ID: 35536201 [TBL] [Abstract][Full Text] [Related]
15. Molecular mapping of QTLs for resistance to Gibberella ear rot, in corn, caused by Fusarium graminearum. Ali ML; Taylor JH; Jie L; Sun G; William M; Kasha KJ; Reid LM; Pauls KP Genome; 2005 Jun; 48(3):521-33. PubMed ID: 16121248 [TBL] [Abstract][Full Text] [Related]
16. A Genome-Wide Association Study To Understand the Effect of Stagnati L; Rahjoo V; Samayoa LF; Holland JB; Borrelli VMG; Busconi M; Lanubile A; Marocco A G3 (Bethesda); 2020 May; 10(5):1685-1696. PubMed ID: 32156690 [No Abstract] [Full Text] [Related]
17. Combined genome-wide association study and transcriptome analysis reveal candidate genes for resistance to Fusarium ear rot in maize. Yao L; Li Y; Ma C; Tong L; Du F; Xu M J Integr Plant Biol; 2020 Oct; 62(10):1535-1551. PubMed ID: 31961059 [TBL] [Abstract][Full Text] [Related]
18. Novel Insights into the Inheritance of Gibberella Ear Rot (GER), Deoxynivalenol (DON) Accumulation, and DON Production. Mesterhazy A; Szabó B; Szél S; Nagy Z; Berényi A; Tóth B Toxins (Basel); 2022 Aug; 14(9):. PubMed ID: 36136521 [TBL] [Abstract][Full Text] [Related]
19. Aggressiveness and Mycotoxin Production by Machado FJ; de Barros AV; McMaster N; Schmale DG; Vaillancourt LJ; Del Ponte EM Phytopathology; 2022 Feb; 112(2):271-277. PubMed ID: 34142851 [No Abstract] [Full Text] [Related]