These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38132771)

  • 21. The CRISPR/Cas9 system and its applications in crop genome editing.
    Bao A; Burritt DJ; Chen H; Zhou X; Cao D; Tran LP
    Crit Rev Biotechnol; 2019 May; 39(3):321-336. PubMed ID: 30646772
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR-Cas9 assisted non-homologous end joining genome editing system of Halomonas bluephagenesis for large DNA fragment deletion.
    Liu C; Yue Y; Xue Y; Zhou C; Ma Y
    Microb Cell Fact; 2023 Oct; 22(1):211. PubMed ID: 37838676
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Double-gene targeting with preassembled Cas9 ribonucleoprotein for safe genome editing in the edible mushroom Pleurotus ostreatus.
    Boontawon T; Nakazawa T; Choi YJ; Ro HS; Oh M; Kawauchi M; Sakamoto M; Honda Y
    FEMS Microbiol Lett; 2023 Jan; 370():. PubMed ID: 36812945
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization of multiplexed CRISPR/Cas9 system for highly efficient genome editing in Setaria viridis.
    Weiss T; Wang C; Kang X; Zhao H; Elena Gamo M; Starker CG; Crisp PA; Zhou P; Springer NM; Voytas DF; Zhang F
    Plant J; 2020 Nov; 104(3):828-838. PubMed ID: 32786122
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR/Cas9; A robust technology for producing genetically engineered plants.
    Farooq R; Hussain K; Nazir S; Javed MR; Masood N
    Cell Mol Biol (Noisy-le-grand); 2018 Nov; 64(14):31-38. PubMed ID: 30511631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gene targeting using pre-assembled Cas9 ribonucleoprotein and split-marker recombination in Pleurotus ostreatus.
    Boontawon T; Nakazawa T; Xu H; Kawauchi M; Sakamoto M; Honda Y
    FEMS Microbiol Lett; 2021 Jul; 368(13):. PubMed ID: 34156066
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A high-efficiency and versatile CRISPR/Cas9-mediated HDR-based biallelic editing system.
    Li X; Sun B; Qian H; Ma J; Paolino M; Zhang Z
    J Zhejiang Univ Sci B; 2022 Feb; 23(2):141-152. PubMed ID: 35187887
    [TBL] [Abstract][Full Text] [Related]  

  • 28.
    Mehravar M; Shirazi A; Mehrazar MM; Nazari M
    Avicenna J Med Biotechnol; 2019; 11(3):259-263. PubMed ID: 31380000
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Simple and Universal System for Gene Manipulation in
    Al Abdallah Q; Ge W; Fortwendel JR
    mSphere; 2017; 2(6):. PubMed ID: 29202040
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes.
    Liang Z; Chen K; Li T; Zhang Y; Wang Y; Zhao Q; Liu J; Zhang H; Liu C; Ran Y; Gao C
    Nat Commun; 2017 Jan; 8():14261. PubMed ID: 28098143
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potential Roles of the Retinoblastoma Protein in Regulating Genome Editing.
    Jiang Y; Chu WK
    Front Cell Dev Biol; 2018; 6():81. PubMed ID: 30109230
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Versatile and Efficient Plant Protoplast Platform for Genome Editing by Cas9 RNPs.
    Jiang W; Bush J; Sheen J
    Front Genome Ed; 2021; 3():719190. PubMed ID: 35005700
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulating mutational outcomes and improving precise gene editing at CRISPR-Cas9-induced breaks by chemical inhibition of end-joining pathways.
    Schimmel J; Muñoz-Subirana N; Kool H; van Schendel R; van der Vlies S; Kamp JA; de Vrij FMS; Kushner SA; Smith GCM; Boulton SJ; Tijsterman M
    Cell Rep; 2023 Feb; 42(2):112019. PubMed ID: 36701230
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient genome editing using endogenous U6 snRNA promoter-driven CRISPR/Cas9 sgRNA in Sclerotinia sclerotiorum.
    Wang C; Rollins JA
    Fungal Genet Biol; 2021 Sep; 154():103598. PubMed ID: 34119663
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ligation-assisted homologous recombination enables precise genome editing by deploying both MMEJ and HDR.
    Zhao Z; Shang P; Sage F; Geijsen N
    Nucleic Acids Res; 2022 Jun; 50(11):e62. PubMed ID: 35212386
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fast and efficient CRISPR-mediated genome editing in Aureobasidium using Cas9 ribonucleoproteins.
    Kreuter J; Stark G; Mach RL; Mach-Aigner AR; Zimmermann C
    J Biotechnol; 2022 May; 350():11-16. PubMed ID: 35398275
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species.
    Wang P
    mSphere; 2018 Jun; 3(3):. PubMed ID: 29898980
    [No Abstract]   [Full Text] [Related]  

  • 39. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.
    Altenbuchner J
    Appl Environ Microbiol; 2016 Sep; 82(17):5421-7. PubMed ID: 27342565
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent advances in therapeutic CRISPR-Cas9 genome editing: mechanisms and applications.
    Zhou L; Yao S
    Mol Biomed; 2023 Apr; 4(1):10. PubMed ID: 37027099
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.