BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 38132886)

  • 1. Metabolomics: An Emerging "Omics" Platform for Systems Biology and Its Implications for Huntington Disease Research.
    Akyol S; Ashrafi N; Yilmaz A; Turkoglu O; Graham SF
    Metabolites; 2023 Dec; 13(12):. PubMed ID: 38132886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the Transition of Pre-Symptomatic to Symptomatic Huntington's Disease Status Based on Omics Data.
    Christodoulou CC; Zachariou M; Tomazou M; Karatzas E; Demetriou CA; Zamba-Papanicolaou E; Spyrou GM
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33049985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted biochemical profiling of brain from Huntington's disease patients reveals novel metabolic pathways of interest.
    Graham SF; Pan X; Yilmaz A; Macias S; Robinson A; Mann D; Green BD
    Biochim Biophys Acta Mol Basis Dis; 2018 Jul; 1864(7):2430-2437. PubMed ID: 29684586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolomics reviewed: a new "omics" platform technology for systems biology and implications for natural products research.
    Rochfort S
    J Nat Prod; 2005 Dec; 68(12):1813-20. PubMed ID: 16378385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beyond the CAG triplet number: exploring potential predictors of delayed age of onset in Huntington's disease.
    Di Tella S; Lo Monaco MR; Petracca M; Zinzi P; Solito M; Piano C; Calabresi P; Silveri MC; Bentivoglio AR
    J Neurol; 2022 Dec; 269(12):6634-6640. PubMed ID: 35915275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transgenic mice expressing mutated full-length HD cDNA: a paradigm for locomotor changes and selective neuronal loss in Huntington's disease.
    Reddy PH; Charles V; Williams M; Miller G; Whetsell WO; Tagle DA
    Philos Trans R Soc Lond B Biol Sci; 1999 Jun; 354(1386):1035-45. PubMed ID: 10434303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards a comprehensive understanding of the contributions of mitochondrial dysfunction and oxidative stress in the pathogenesis and pathophysiology of Huntington's disease.
    Tobore TO
    J Neurosci Res; 2019 Nov; 97(11):1455-1468. PubMed ID: 31304621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Animal models of Huntington's disease: implications in uncovering pathogenic mechanisms and developing therapies.
    Wang LH; Qin ZH
    Acta Pharmacol Sin; 2006 Oct; 27(10):1287-302. PubMed ID: 17007735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depressive symptoms in prodromal Huntington's Disease correlate with Stroop-interference related functional connectivity in the ventromedial prefrontal cortex.
    Unschuld PG; Joel SE; Pekar JJ; Reading SA; Oishi K; McEntee J; Shanahan M; Bakker A; Margolis RL; Bassett SS; Rosenblatt A; Mori S; van Zijl PC; Ross CA; Redgrave GW
    Psychiatry Res; 2012; 203(2-3):166-74. PubMed ID: 22974690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical-Genetic Associations in the Prospective Huntington at Risk Observational Study (PHAROS): Implications for Clinical Trials.
    ; Biglan KM; Shoulson I; Kieburtz K; Oakes D; Kayson E; Shinaman MA; Zhao H; Romer M; Young A; Hersch S; Penney J; Marder K; Paulsen J; Quaid K; Siemers E; Tanner C; Mallonee W; Suter G; Dubinsky R; Gray C; Nance M; Bundlie S; Radtke D; Kostyk S; Baic C; Caress J; Walker F; Hunt V; O'Neill C; Chouinard S; Factor S; Greenamyre T; Wood-Siverio C; Corey-Bloom J; Song D; Peavy G; Moskowitz C; Wesson M; Samii A; Bird T; Lipe H; Blindauer K; Marshall F; Zimmerman C; Goldstein J; Rosas D; Novak P; Caviness J; Adler C; Duffy A; Wheelock V; Tempkin T; Richman D; Seeberger L; Albin R; Chou KL; Racette B; Perlmutter JS; Perlman S; Bordelon Y; Martin W; Wieler M; Leavitt B; Raymond L; Decolongon J; Clarke L; Jankovic J; Hunter C; Hauser RA; Sanchez-Ramos J; Furtado S; Suchowersky O; Klimek ML; Guttman M; Sethna R; Feigin A; Cox M; Shannon B; Percy A; Dure L; Harrison M; Johnson W; Higgins D; Molho E; Nickerson C; Evans S; Hobson D; Singer C; Galvez-Jimenez N; Shannon K; Comella C; Ross C; Saint-Hilaire MH; Testa C; Rosenblatt A; Hogarth P; Weiner W; Como P; Kumar R; Cotto C; Stout J; Brocht A; Watts A; Eberly S; Weaver C; Foroud T; Gusella J; MacDonald M; Myers R; Fahn S; Shults C
    JAMA Neurol; 2016 Jan; 73(1):102-10. PubMed ID: 26569098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dysregulation of synaptic proteins, dendritic spine abnormalities and pathological plasticity of synapses as experience-dependent mediators of cognitive and psychiatric symptoms in Huntington's disease.
    Nithianantharajah J; Hannan AJ
    Neuroscience; 2013 Oct; 251():66-74. PubMed ID: 22633949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cognitive Control, Learning, and Clinical Motor Ratings Are Most Highly Associated with Basal Ganglia Brain Volumes in the Premanifest Huntington's Disease Phenotype.
    Misiura MB; Lourens S; Calhoun VD; Long J; Bockholt J; Johnson H; Zhang Y; Paulsen JS; Turner JA; Liu J; Kara B; Fall E;
    J Int Neuropsychol Soc; 2017 Feb; 23(2):159-170. PubMed ID: 28205498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of manifest Huntington's disease with clinical and imaging measures: a prospective observational study.
    Paulsen JS; Long JD; Ross CA; Harrington DL; Erwin CJ; Williams JK; Westervelt HJ; Johnson HJ; Aylward EH; Zhang Y; Bockholt HJ; Barker RA;
    Lancet Neurol; 2014 Dec; 13(12):1193-201. PubMed ID: 25453459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Huntington's disease: clinical and molecular genetics].
    Warita H; Shiro Y; Kashihara K; Abe K
    Nihon Rinsho; 1999 Apr; 57(4):896-9. PubMed ID: 10222786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potassium channel dysfunction in neurons and astrocytes in Huntington's disease.
    Zhang X; Wan JQ; Tong XP
    CNS Neurosci Ther; 2018 Apr; 24(4):311-318. PubMed ID: 29377621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetics of Huntington disease.
    Nance MA
    Handb Clin Neurol; 2017; 144():3-14. PubMed ID: 28947123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor onset and diagnosis in Huntington disease using the diagnostic confidence level.
    Liu D; Long JD; Zhang Y; Raymond LA; Marder K; Rosser A; McCusker EA; Mills JA; Paulsen JS;
    J Neurol; 2015 Dec; 262(12):2691-8. PubMed ID: 26410751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenetic alterations mediate iPSC-induced normalization of DNA repair gene expression and TNR stability in Huntington's disease cells.
    Mollica PA; Zamponi M; Reid JA; Sharma DK; White AE; Ogle RC; Bruno RD; Sachs PC
    J Cell Sci; 2018 Jul; 131(13):. PubMed ID: 29898922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Dynein Axonemal Heavy Chain 6 Gene Expression as a Possible Biomarker for Huntington's Disease: a Translational Study.
    Areal LB; Pereira LP; Ribeiro FM; Olmo IG; Muniz MR; do Carmo Rodrigues M; Costa PF; Martins-Silva C; Ferguson SSG; Guimarães DAM; Pires RGW
    J Mol Neurosci; 2017 Dec; 63(3-4):342-348. PubMed ID: 29019003
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 18.