These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 38132907)
1. Advancements in Gas Separation for Energy Applications: Exploring the Potential of Polymer Membranes with Intrinsic Microporosity (PIM). Astorino C; De Nardo E; Lettieri S; Ferraro G; Pirri CF; Bocchini S Membranes (Basel); 2023 Dec; 13(12):. PubMed ID: 38132907 [TBL] [Abstract][Full Text] [Related]
2. Blends of a Polymer of Intrinsic Microporosity and Partially Sulfonated Polyphenylenesulfone for Gas Separation. Yong WF; Lee ZK; Chung TS; Weber M; Staudt C; Maletzko C ChemSusChem; 2016 Aug; 9(15):1953-62. PubMed ID: 27332951 [TBL] [Abstract][Full Text] [Related]
3. Dibenzomethanopentacene-Based Polymers of Intrinsic Microporosity for Use in Gas-Separation Membranes. Chen J; Longo M; Fuoco A; Esposito E; Monteleone M; Comesaña Gándara B; Carolus Jansen J; McKeown NB Angew Chem Int Ed Engl; 2023 Feb; 62(8):e202215250. PubMed ID: 36511357 [TBL] [Abstract][Full Text] [Related]
4. Polymer ultrapermeability from the inefficient packing of 2D chains. Rose I; Bezzu CG; Carta M; Comesaña-Gándara B; Lasseuguette E; Ferrari MC; Bernardo P; Clarizia G; Fuoco A; Jansen JC; Hart KE; Liyana-Arachchi TP; Colina CM; McKeown NB Nat Mater; 2017 Sep; 16(9):932-937. PubMed ID: 28759030 [TBL] [Abstract][Full Text] [Related]
5. Ionic Liquids-Polymer of Intrinsic Microporosity (PIMs) Blend Membranes for CO Ferraro G; Astorino C; Bartoli M; Martis A; Lettieri S; Pirri CF; Bocchini S Membranes (Basel); 2022 Dec; 12(12):. PubMed ID: 36557169 [TBL] [Abstract][Full Text] [Related]
6. Tailoring the Microporosity of Polymers of Intrinsic Microporosity for Advanced Gas Separation by Atomic Layer Deposition. Chen X; Wu L; Yang H; Qin Y; Ma X; Li N Angew Chem Int Ed Engl; 2021 Aug; 60(33):17875-17880. PubMed ID: 33547845 [TBL] [Abstract][Full Text] [Related]
7. Poly(ionic liquid)/Ionic Liquid Ion-Gels with High "Free" Ionic Liquid Content: Platform Membrane Materials for CO2/Light Gas Separations. Cowan MG; Gin DL; Noble RD Acc Chem Res; 2016 Apr; 49(4):724-32. PubMed ID: 27046045 [TBL] [Abstract][Full Text] [Related]
8. Key Applications and Potential Limitations of Ionic Liquid Membranes in the Gas Separation Process of CO Elhenawy S; Khraisheh M; AlMomani F; Hassan M Molecules; 2020 Sep; 25(18):. PubMed ID: 32961921 [TBL] [Abstract][Full Text] [Related]
9. Ultrathin Composite Polymeric Membranes for CO Benito J; Sánchez-Laínez J; Zornoza B; Martín S; Carta M; Malpass-Evans R; Téllez C; McKeown NB; Coronas J; Gascón I ChemSusChem; 2017 Oct; 10(20):4014-4017. PubMed ID: 28877422 [TBL] [Abstract][Full Text] [Related]
11. Leveraging Free Volume Manipulation to Improve the Membrane Separation Performance of Amine-Functionalized PIM-1. Mizrahi Rodriguez K; Lin S; Wu AX; Han G; Teesdale JJ; Doherty CM; Smith ZP Angew Chem Int Ed Engl; 2021 Mar; 60(12):6593-6599. PubMed ID: 33278319 [TBL] [Abstract][Full Text] [Related]
12. Thin Film Composite Membranes Based on the Polymer of Intrinsic Microporosity PIM-EA(Me Longo M; Monteleone M; Esposito E; Fuoco A; Tocci E; Ferrari MC; Comesaña-Gándara B; Malpass-Evans R; McKeown NB; Jansen JC Membranes (Basel); 2022 Sep; 12(9):. PubMed ID: 36135900 [TBL] [Abstract][Full Text] [Related]
13. Hydroxyl-Functionalized Polymers of Intrinsic Microporosity and Dual-Functionalized Blends for High-Performance Membrane-Based Gas Separations. Wang Y; Alaslai N; Ghanem B; Ma X; Hu X; Balcik M; Liu Q; Abdulhamid MA; Han Y; Eddaoudi M; Pinnau I Adv Mater; 2024 Sep; ():e2406076. PubMed ID: 39324252 [TBL] [Abstract][Full Text] [Related]
14. New Azo-DMOF-1 MOF as a Photoresponsive Low-Energy CO Prasetya N; Ladewig BP ACS Appl Mater Interfaces; 2018 Oct; 10(40):34291-34301. PubMed ID: 30203961 [TBL] [Abstract][Full Text] [Related]
15. Separation of carbon dioxide from flue gas by mixed matrix membranes using dual phase microporous polymeric constituents. Sekizkardes AK; Kusuma VA; Dahe G; Roth EA; Hill LJ; Marti A; Macala M; Venna SR; Hopkinson D Chem Commun (Camb); 2016 Sep; 52(79):11768-11771. PubMed ID: 27722238 [TBL] [Abstract][Full Text] [Related]
16. Adjustable Functionalization of Hyper-Cross-Linked Polymers of Intrinsic Microporosity for Enhanced CO Zhou H; Rayer C; Antonangelo AR; Hawkins N; Carta M ACS Appl Mater Interfaces; 2022 May; 14(18):20997-21006. PubMed ID: 35471026 [TBL] [Abstract][Full Text] [Related]
17. Ionic-Functionalized Polymers of Intrinsic Microporosity for Gas Separation Applications. Rukmani SJ; Liyana-Arachchi TP; Hart KE; Colina CM Langmuir; 2018 Apr; 34(13):3949-3960. PubMed ID: 29553745 [TBL] [Abstract][Full Text] [Related]
18. Pentiptycene-based ladder polymers with configurational free volume for enhanced gas separation performance and physical aging resistance. Corrado TJ; Huang Z; Huang D; Wamble N; Luo T; Guo R Proc Natl Acad Sci U S A; 2021 Sep; 118(37):. PubMed ID: 34493656 [TBL] [Abstract][Full Text] [Related]
19. Engineering the Polymer-MOF Interface in Microporous Composites to Address Complex Mixture Separations. Wu WN; Mizrahi Rodriguez K; Roy N; Teesdale JJ; Han G; Liu A; Smith ZP ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 37931132 [TBL] [Abstract][Full Text] [Related]
20. Recent advancements in polyurethane-based membranes for gas separation. Arshad N; Batool SR; Razzaq S; Arshad M; Rasheed A; Ashraf M; Nawab Y; Nazeer MA Environ Res; 2024 Jul; 252(Pt 3):118953. PubMed ID: 38636643 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]