These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38132986)

  • 21. Effect of Nickel Coated Multi-Walled Carbon Nanotubes on Electrochemical Performance of Lithium-Sulfur Rechargeable Batteries.
    Wu X; Yao S; Hou J; Jing M; Qian X; Shen X; Xiang J; Xi X
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2482-487. PubMed ID: 29648771
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High Cycling Stability of the LiNi
    Zha G; Ouyang C; Yin S; Yao K; Agarwal S; Hu N; Hou H
    Small; 2021 Nov; 17(47):e2102981. PubMed ID: 34585828
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pomegranate-Structured Conversion-Reaction Cathode with a Built-in Li Source for High-Energy Li-Ion Batteries.
    Fan X; Zhu Y; Luo C; Suo L; Lin Y; Gao T; Xu K; Wang C
    ACS Nano; 2016 May; 10(5):5567-77. PubMed ID: 27163232
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Epoxy Composites with High Thermal Conductivity by Constructing Three-Dimensional Carbon Fiber/Carbon/Nickel Networks Using an Electroplating Method.
    Wang Y; Tang B; Gao Y; Wu X; Chen J; Shan L; Sun K; Zhao Y; Yang K; Yu J; Li W
    ACS Omega; 2021 Jul; 6(29):19238-19251. PubMed ID: 34337262
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graphene/PVDF Composites for Ni-rich Oxide Cathodes Toward High-Energy Density Li-ion Batteries.
    Park CW; Lee JH; Seo JK; Ran WTA; Whang D; Hwang SM; Kim YJ
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33925721
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Atomistic Insights into FeF
    Yang Z; Zhao S; Pan Y; Wang X; Liu H; Wang Q; Zhang Z; Deng B; Guo C; Shi X
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):3142-3151. PubMed ID: 29286642
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Seeding Iron Trifluoride Nanoparticles on Reduced Graphite Oxide for Lithium-Ion Batteries with Enhanced Loading and Stability.
    Qiu D; Fu L; Zhan C; Lu J; Wu D
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29505-29510. PubMed ID: 30092138
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aromatic Polyimide/Graphene Composite Organic Cathodes for Fast and Sustainable Lithium-Ion Batteries.
    Lyu H; Li P; Liu J; Mahurin S; Chen J; Hensley DK; Veith GM; Guo Z; Dai S; Sun XG
    ChemSusChem; 2018 Feb; 11(4):763-772. PubMed ID: 29363278
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In Situ Engineering Toward Core Regions: A Smart Way to Make Applicable FeF
    Li L; Zhu J; Xu M; Jiang J; Li CM
    ACS Appl Mater Interfaces; 2017 May; 9(21):17992-18000. PubMed ID: 28489344
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal behaviour of Li
    Gotcu P; Pfleging W; Smyrek P; Seifert HJ
    Phys Chem Chem Phys; 2017 May; 19(19):11920-11930. PubMed ID: 28440389
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dual-modification of Ni-rich cathode materials through strontium titanate coating and thermal treatment.
    Guan P; Min J; Chen F; Zhang S; Zhu Y; Liu C; Hu Y; Wan T; Li M; Liu Y; Su D; Hart JN; Li Z; Chu D
    J Colloid Interface Sci; 2023 Dec; 652(Pt B):1184-1196. PubMed ID: 37657218
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D Honeycomb Architecture Enables a High-Rate and Long-Life Iron (III) Fluoride-Lithium Battery.
    Wu F; Srot V; Chen S; Lorger S; van Aken PA; Maier J; Yu Y
    Adv Mater; 2019 Oct; 31(43):e1905146. PubMed ID: 31513323
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermal Transport Properties of Sulfur-Loaded Carbon-Based Nanotubes and Composite Sulfur Cathodes in Lithium-Sulfur Batteries.
    Song J; Xu Z; Xu X; Liang X; He X
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1817-1826. PubMed ID: 36542776
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication of Nitrogen-Doped Carbon-Coated NiS
    Qin N; Tong B; Ling X; Shi J; Wei W; Mi L
    Langmuir; 2023 Nov; 39(45):16111-16117. PubMed ID: 37924327
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Revealing the synergistic mechanism of multiply nanostructured V
    Luo Y; Ouyang Z; Lin Y; Song X; He S; Zhao J; Xiao Y; Lei S; Yuan C; Cheng B
    J Colloid Interface Sci; 2022 Apr; 612():760-771. PubMed ID: 35030347
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lithium intercalation mechanism into FeF
    Ali G; Lee JH; Chang W; Cho BW; Jung HG; Nam KW; Chung KY
    Sci Rep; 2017 Feb; 7():42237. PubMed ID: 28169373
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prussian blue analogs derived Fe-Ni-P@nitrogen-doped carbon composites as sulfur host for high-performance lithium-sulfur batteries.
    Song C; Jin Q; Zhang W; Hu C; Bakenov Z; Zhao Y
    J Colloid Interface Sci; 2021 Aug; 595():51-58. PubMed ID: 33813224
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrochemically Activated Nickel-Carbon Composite as Ultrastable Cathodes for Rechargeable Nickel-Zinc Batteries.
    Meng L; Lin D; Wang J; Zeng Y; Liu Y; Lu X
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):14854-14861. PubMed ID: 30938148
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cr-Doped Fe
    Zhang C; Yan M; Li W; Han C; Li J; Zhao H; Jia G; An S; Qiu X
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):48653-48660. PubMed ID: 34613691
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries.
    Wang DY; Guo W; Fu Y
    Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.