These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 38133004)
1. The Manufacturing Conditions for the Direct and Reproducible Formation of Electrospun PCL/Gelatine 3D Structures for Tissue Regeneration. Howard CJ; Paul A; Duruanyanwu J; Sackho K; Campagnolo P; Stolojan V Nanomaterials (Basel); 2023 Dec; 13(24):. PubMed ID: 38133004 [TBL] [Abstract][Full Text] [Related]
2. In vitro cytotoxicity and antibacterial activity of silver-coated electrospun polycaprolactone/gelatine nanofibrous scaffolds. Lim MM; Sultana N 3 Biotech; 2016 Dec; 6(2):211. PubMed ID: 28330282 [TBL] [Abstract][Full Text] [Related]
3. Fabrication and evaluation of poly(epsilon-caprolactone)/silk fibroin blend nanofibrous scaffold. Lim JS; Ki CS; Kim JW; Lee KG; Kang SW; Kweon HY; Park YH Biopolymers; 2012 May; 97(5):265-75. PubMed ID: 22169927 [TBL] [Abstract][Full Text] [Related]
4. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Yao Q; Cosme JG; Xu T; Miszuk JM; Picciani PH; Fong H; Sun H Biomaterials; 2017 Jan; 115():115-127. PubMed ID: 27886552 [TBL] [Abstract][Full Text] [Related]
5. Fibrous biodegradable l-alanine-based scaffolds for vascular tissue engineering. Srinath D; Lin S; Knight DK; Rizkalla AS; Mequanint K J Tissue Eng Regen Med; 2014 Jul; 8(7):578-88. PubMed ID: 22899439 [TBL] [Abstract][Full Text] [Related]
6. A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo. Huang L; Zhu L; Shi X; Xia B; Liu Z; Zhu S; Yang Y; Ma T; Cheng P; Luo K; Huang J; Luo Z Acta Biomater; 2018 Mar; 68():223-236. PubMed ID: 29274478 [TBL] [Abstract][Full Text] [Related]
7. Polydopamine Inter-Fiber Networks: New Strategy for Producing Rigid, Sticky, 3D Fluffy Electrospun Fibrous Polycaprolactone Sponges. Choi W; Lee S; Kim SH; Jang JH Macromol Biosci; 2016 Jun; 16(6):824-35. PubMed ID: 26855375 [TBL] [Abstract][Full Text] [Related]
8. Novel 3D scaffold with enhanced physical and cell response properties for bone tissue regeneration, fabricated by patterned electrospinning/electrospraying. Hejazi F; Mirzadeh H J Mater Sci Mater Med; 2016 Sep; 27(9):143. PubMed ID: 27550014 [TBL] [Abstract][Full Text] [Related]
9. Electrospun Fibres with Hyaluronic Acid-Chitosan Nanoparticles Produced by a Portable Device. Fuenteslópez CV; Ye H Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33066151 [TBL] [Abstract][Full Text] [Related]
10. 3D PCL/Gelatin/Genipin Nanofiber Sponge as Scaffold for Regenerative Medicine. Merk M; Chirikian O; Adlhart C Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33923751 [TBL] [Abstract][Full Text] [Related]
11. Three-dimensional endothelial cell incorporation within bioactive nanofibrous scaffolds through concurrent emulsion electrospinning and coaxial cell electrospraying. Zhao Q; Zhou Y; Wang M Acta Biomater; 2021 Mar; 123():312-324. PubMed ID: 33508508 [TBL] [Abstract][Full Text] [Related]
12. A Parameter Study for 3D-Printing Organized Nanofibrous Collagen Scaffolds Using Direct-Write Electrospinning. Alexander FA; Johnson L; Williams K; Packer K Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31835507 [TBL] [Abstract][Full Text] [Related]
13. Electrospun 3D Scaffolds for Tissue Regeneration. Sampath Kumar TS; Yogeshwar Chakrapani V Adv Exp Med Biol; 2018; 1078():29-47. PubMed ID: 30357617 [TBL] [Abstract][Full Text] [Related]
14. Mass production of nanofibrous extracellular matrix with controlled 3D morphology for large-scale soft tissue regeneration. Alamein MA; Stephens S; Liu Q; Skabo S; Warnke PH Tissue Eng Part C Methods; 2013 Jun; 19(6):458-72. PubMed ID: 23102268 [TBL] [Abstract][Full Text] [Related]
15. Calendula officinalis extract/PCL/Zein/Gum arabic nanofibrous bio-composite scaffolds via suspension, two-nozzle and multilayer electrospinning for skin tissue engineering. Pedram Rad Z; Mokhtari J; Abbasi M Int J Biol Macromol; 2019 Aug; 135():530-543. PubMed ID: 31152839 [TBL] [Abstract][Full Text] [Related]
16. Morphology, drug release, antibacterial, cell proliferation, and histology studies of chamomile-loaded wound dressing mats based on electrospun nanofibrous poly(ɛ-caprolactone)/polystyrene blends. Motealleh B; Zahedi P; Rezaeian I; Moghimi M; Abdolghaffari AH; Zarandi MA J Biomed Mater Res B Appl Biomater; 2014 Jul; 102(5):977-87. PubMed ID: 24259351 [TBL] [Abstract][Full Text] [Related]
17. Comparative studies on thin polycaprolactone-tricalcium phosphate composite scaffolds and its interaction with mesenchymal stem cells. Janarthanan G; Kim IG; Chung EJ; Noh I Biomater Res; 2019; 23():1. PubMed ID: 30788137 [TBL] [Abstract][Full Text] [Related]
19. A comparison of nanoscale and multiscale PCL/gelatin scaffolds prepared by disc-electrospinning. Li D; Chen W; Sun B; Li H; Wu T; Ke Q; Huang C; Ei-Hamshary H; Al-Deyab SS; Mo X Colloids Surf B Biointerfaces; 2016 Oct; 146():632-41. PubMed ID: 27429297 [TBL] [Abstract][Full Text] [Related]
20. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications. Stefani I; Cooper-White JJ Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]