These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38133016)

  • 1. Understanding the Mechanism of the Structure-Dependent Mechanical Performance of Carbon-Nanotube-Based Hierarchical Networks from a Deformation Mode Perspective.
    Shi X; He X; Liu X
    Nanomaterials (Basel); 2023 Dec; 13(24):. PubMed ID: 38133016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Defect Number, Distribution Continuity and Orientation on Tensile Strengths of the CNT-Based Networks: A Molecular Dynamics Study.
    Shi X; He X; Sun L; Liu X
    Nanoscale Res Lett; 2022 Jan; 17(1):15. PubMed ID: 35032241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanics modeling of deformation and failure of super carbon nanotube networks.
    Liu X; Yang QS; He XQ; Mai YW
    Nanotechnology; 2011 Nov; 22(47):475701. PubMed ID: 22048262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chirality-Dependent Mechanical Properties of Bundles and Thin Films Composed of Covalently Cross-Linked Carbon Nanotubes.
    Kayang KW; Banna AH; Volkov AN
    Langmuir; 2022 Feb; 38(6):1977-1994. PubMed ID: 35104409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the Nanotube Radius and the Volume Fraction on the Mechanical Properties of Carbon Nanotube-Reinforced Aluminum Metal Matrix Composites.
    Suk ME
    Molecules; 2021 Jun; 26(13):. PubMed ID: 34203387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical and thermal properties of graphyne-coated carbon nanotubes: a molecular dynamics simulation on one-dimensional all-carbon van der Waals heterostructures.
    Li J; Ying P; Liang T; Du Y; Zhou J; Zhang J
    Phys Chem Chem Phys; 2023 Mar; 25(12):8651-8663. PubMed ID: 36891945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical properties of CNT-reinforced Ni
    Wang Z; Yang F; Shang J; Wei N; Kou L; Li C
    J Phys Condens Matter; 2020 May; 32(20):205301. PubMed ID: 31935697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A molecular dynamics investigation for predicting the effect of various parameters on the mechanical properties of carbon nanotube-reinforced aluminum nanocomposites.
    Patel PR; Sharma S; Tiwari SK
    J Mol Model; 2020 Aug; 26(9):238. PubMed ID: 32813056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint Theoretical and Experimental Study of Stress Graphitization in Aligned Carbon Nanotube/Carbon Matrix Composites.
    Zhang L; Kowalik M; Mao Q; Damirchi B; Zhang Y; Bradford PD; Li Q; van Duin ACT; Zhu YT
    ACS Appl Mater Interfaces; 2023 Jul; 15(27):32656-32666. PubMed ID: 37384459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Atomistic Study of the Tensile Deformation of Carbon Nanotube-Polymethylmethacrylate Composites.
    Raj A; Alvi SMAA; Islam K; Motalab M; Xu S
    Polymers (Basel); 2023 Jul; 15(13):. PubMed ID: 37447601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Torsional Properties of Bundles with Randomly Packed Carbon Nanotubes.
    Wei H; Ting HZJ; Gong Y; Lü C; Glukhova OE; Zhan H
    Nanomaterials (Basel); 2022 Feb; 12(5):. PubMed ID: 35269252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering the mechanical properties of CNT/PEEK nanocomposites.
    Wang B; Zhang K; Zhou C; Ren M; Gu Y; Li T
    RSC Adv; 2019 Apr; 9(23):12836-12845. PubMed ID: 35520815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effective modulus of super carbon nanotubes predicted by molecular structure mechanics.
    Li Y; Qiu X; Yang F; Wang XS; Yin Y
    Nanotechnology; 2008 Jun; 19(22):225701. PubMed ID: 21825768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Length-dependent carbon nanotube film structures and mechanical properties.
    Zhang L; Ma X; Zhang Y; Bradford PD; Zhu YT
    Nanotechnology; 2021 Apr; 32(26):. PubMed ID: 33730705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous Improvement on Strength, Modulus, and Elongation of Carbon Nanotube Films Functionalized by Hyperbranched Polymers.
    Duan Q; Wang S; Wang Q; Li T; Chen S; Miao M; Zhang D
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):36278-36285. PubMed ID: 31490648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microstructural evolution of carbon nanotube fibers: deformation and strength mechanism.
    Liu X; Lu W; Ayala OM; Wang LP; Karlsson AM; Yang Q; Chou TW
    Nanoscale; 2013 Mar; 5(5):2002-8. PubMed ID: 23370166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the Mechanical and Adhesion Properties of Carbon Nanotubes Using Aligned Cellulose Wrap (Cellulose Nanotube): A Molecular Dynamics Study.
    Shishehbor M; Pouranian MR
    Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31963187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical Properties of the Pt-CNT Composite under Uniaxial Deformation: Tension and Compression.
    Yankovaskaya UI; Korznikova EA; Korpusova SD; Zakharov PV
    Materials (Basel); 2023 Jun; 16(11):. PubMed ID: 37297274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model for the strength of yarn-like carbon nanotube fibers.
    Vilatela JJ; Elliott JA; Windle AH
    ACS Nano; 2011 Mar; 5(3):1921-7. PubMed ID: 21348503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunneling resistance model for piezoresistive carbon nanotube polymer composites.
    Klimm W; Kwok K
    Nanotechnology; 2022 Nov; 34(4):. PubMed ID: 36265434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.