These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 38133039)

  • 41. Towards Highly Efficient Chalcopyrite Photocathodes for Water Splitting: The Use of Cocatalysts beyond Pt.
    Salomao AC; Dos Santos Araujo M; Dos Santos HLS; Medina M; Mascaro LH; Andrade Junior MAS
    ChemSusChem; 2021 Nov; 14(21):4671-4679. PubMed ID: 34411435
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Near-Ideal Copper Oxide Heterostructure Design for Photoelectrochemical Water Splitting.
    Hong MJ; Kim MS; Lee SB; Kim SK; Kim YJ; Lee GJ
    ACS Appl Mater Interfaces; 2024 Oct; 16(43):58556-58565. PubMed ID: 39404477
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Photoelectrochemical hydrogen generation employing a Cu
    Chhetri M; Rao CNR
    Phys Chem Chem Phys; 2018 Jun; 20(22):15300-15306. PubMed ID: 29796487
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Surface Assistant Charge Separation in PEC Cu
    Zhang W; Chen R; Yin Z; Wang X; Wang Z; Fan F; Ma Y
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):34000-34009. PubMed ID: 31442374
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Novel Nanoarchitectured Cu
    Lee DJ; Mohan Kumar G; Ganesh V; Jeon HC; Kim DY; Kang TW; Ilanchezhiyan P
    Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36144977
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Decoration of Cu
    Li X; Liu B; Chen Y; Fan X; Li Y; Zhang F; Zhang G; Peng W
    Nanotechnology; 2018 Dec; 29(50):505603. PubMed ID: 30272574
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Efficient CuO/Ag
    Mustafa E; Dawi EA; Ibupoto ZH; Ibrahim AMM; Elsukova A; Liu X; Tahira A; Adam RE; Willander M; Nur O
    RSC Adv; 2023 Apr; 13(17):11297-11310. PubMed ID: 37057263
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimal n-Type Al-Doped ZnO Overlayers for Charge Transport Enhancement in p-Type Cu
    Lee HH; Kim DS; Choi JH; Kim YB; Jung SH; Sarker S; Deshpande NG; Suh HW; Cho HK
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33810027
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhancing Durability and Photoelectrochemical Performance of the Earth Abundant Ni-Mo/TiO
    Baek M; Zafar M; Kim S; Kim DH; Jeon CW; Lee J; Yong K
    ChemSusChem; 2018 Oct; 11(20):3679-3688. PubMed ID: 30134016
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Novel p-n heterojunction copper phosphide/cuprous oxide photocathode for solar hydrogen production.
    Chen YC; Chen ZB; Hsu YK
    J Colloid Interface Sci; 2018 Aug; 523():201-207. PubMed ID: 29625322
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Copper Oxide-Based Photocatalysts and Photocathodes: Fundamentals and Recent Advances.
    Baran T; Visibile A; Busch M; He X; Wojtyla S; Rondinini S; Minguzzi A; Vertova A
    Molecules; 2021 Nov; 26(23):. PubMed ID: 34885863
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Plasmonic enhanced Cu
    Cheng X; Gu S; Centeno A; Dawson G
    Sci Rep; 2019 Mar; 9(1):5140. PubMed ID: 30914703
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Accelerate charge separation in Cu
    Zhang M; Xue H; Han X; Zhang Z; Jiang Y; Deng Y; Hu W
    J Colloid Interface Sci; 2023 Nov; 650(Pt A):284-293. PubMed ID: 37413862
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhancing the Performance of Si-Based Photocathodes for Solar Hydrogen Production in Alkaline Solution by Facilely Intercalating a Sandwich N-Doped Carbon Nanolayer to the Interface of Si and TiO
    Sun X; Jiang J; Yang Y; Shan Y; Gong L; Wang M
    ACS Appl Mater Interfaces; 2019 May; 11(21):19132-19140. PubMed ID: 31062963
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Au@Cu
    Lai TH; Tsao CW; Fang MJ; Wu JY; Chang YP; Chiu YH; Hsieh PY; Kuo MY; Chang KD; Hsu YJ
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):40771-40783. PubMed ID: 36040289
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Silicon based photoelectrodes for photoelectrochemical water splitting.
    Fan R; Mi Z; Shen M
    Opt Express; 2019 Feb; 27(4):A51-A80. PubMed ID: 30876004
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluation of the Efficiency of Photoelectrochemical Activity Enhancement for the Nanostructured LaFeO
    Chertkova VP; Iskortseva AN; Pazhetnov EM; Arkharova NA; Ryazantsev SV; Levin EE; Nikitina VA
    Nanomaterials (Basel); 2022 Dec; 12(23):. PubMed ID: 36500950
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Solar Hydrogen Production from Zinc Telluride Photocathode Modified with Carbon and Molybdenum Sulfide.
    Jang YJ; Lee J; Lee J; Lee JS
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):7748-55. PubMed ID: 26909873
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recent Advances in Earth-Abundant Photocathodes for Photoelectrochemical Water Splitting.
    Yang W; Moon J
    ChemSusChem; 2019 May; 12(9):1889-1899. PubMed ID: 30102017
    [TBL] [Abstract][Full Text] [Related]  

  • 60. How photocorrosion can trick you: a detailed study on low-bandgap Li doped CuO photocathodes for solar hydrogen production.
    Kampmann J; Betzler S; Hajiyani H; Häringer S; Beetz M; Harzer T; Kraus J; Lotsch BV; Scheu C; Pentcheva R; Fattakhova-Rohlfing D; Bein T
    Nanoscale; 2020 Apr; 12(14):7766-7775. PubMed ID: 32215409
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.