BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 38133107)

  • 1. Effects of Training Sets Sequence on Swimming Performance, Training Load and Physiological Responses.
    Nikitakis IS; Bogdanis GC; Paradisis GP; Toubekis AG
    Sports (Basel); 2023 Dec; 11(12):. PubMed ID: 38133107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological Responses and Swimming-Performance Changes Induced by Altering the Sequence of Training Sets.
    Nikitakis IS; Bogdanis GC; Paradisis GP; Toubekis AG
    Int J Sports Physiol Perform; 2024 Jan; 19(1):53-61. PubMed ID: 37890838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of active and passive recovery on performance during repeated-sprint swimming.
    Toubekis AG; Peyrebrune MC; Lakomy HK; Nevill ME
    J Sports Sci; 2008 Dec; 26(14):1497-505. PubMed ID: 18979341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of Biotechnology Devices to Analyse Fatigue Process in Swimming Training.
    Clemente-Suárez VJ; Arroyo-Toledo JJ
    J Med Syst; 2017 Jun; 41(6):94. PubMed ID: 28470361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active recovery intervals restore initial performance after repeated sprints in swimming.
    Kostoulas ID; Toubekis AG; Paxinos T; Volaklis K; Tokmakidis SP
    Eur J Sport Sci; 2018 Apr; 18(3):323-331. PubMed ID: 29249177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-Volume Sprint Interval Swimming Is Sufficient to Increase Blood Metabolic Biomarkers in Master Swimmers.
    Kabasakalis A; Nikolaidis S; Tsalis G; Mougios V
    Res Q Exerc Sport; 2022 Jun; 93(2):318-324. PubMed ID: 33084521
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of different intensities of active recovery on sprint swimming performance.
    Toubekis AG; Smilios I; Bogdanis GC; Mavridis G; Tokmakidis SP
    Appl Physiol Nutr Metab; 2006 Dec; 31(6):709-16. PubMed ID: 17213885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute Physiological Responses to Ultra Short Race-Pace Training in Competitive Swimmers.
    Williamson D; McCarthy E; Ditroilo M
    J Hum Kinet; 2020 Oct; 75():95-102. PubMed ID: 33312298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Dryland Training During the COVID-19 Lockdown Period on Swimming Performance.
    Arsoniadis GG; Botonis PG; Tsoltos AI; Chatzigiannakis AD; Bogdanis GC; Terzis GD; Toubekis AG
    Int J Sports Physiol Perform; 2022 Aug; 17(8):1264-1271. PubMed ID: 35894996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-Season Repeated-Sprint Training in Hypoxia in International Field Hockey Players.
    James C; Girard O
    Front Sports Act Living; 2020; 2():66. PubMed ID: 33345057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validating Physiological and Biomechanical Parameters during Intermittent Swimming at Speed Corresponding to Lactate Concentration of 4 mmol·L
    Arsoniadis GG; Nikitakis IS; Botonis PG; Malliaros I; Toubekis AG
    Sports (Basel); 2020 Feb; 8(2):. PubMed ID: 32085643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decreasing sprint duration from 20 to 10 s during reduced-exertion high-intensity interval training (REHIT) attenuates the increase in maximal aerobic capacity but has no effect on affective and perceptual responses.
    Nalçakan GR; Songsorn P; Fitzpatrick BL; Yüzbasioglu Y; Brick NE; Metcalfe RS; Vollaard NBJ
    Appl Physiol Nutr Metab; 2018 Apr; 43(4):338-344. PubMed ID: 29172029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intensity of exercise recovery, blood lactate disappearance, and subsequent swimming performance.
    Greenwood JD; Moses GE; Bernardino FM; Gaesser GA; Weltman A
    J Sports Sci; 2008 Jan; 26(1):29-34. PubMed ID: 17852681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blood Lactate and Maximal Lactate Accumulation Rate at Three Sprint Swimming Distances in Highly Trained and Elite Swimmers.
    Mavroudi M; Kabasakalis A; Petridou A; Mougios V
    Sports (Basel); 2023 Apr; 11(4):. PubMed ID: 37104161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute Resistance Exercise: Physiological and Biomechanical Alterations During a Subsequent Swim Training Session.
    Arsoniadis GG; Bogdanis GC; Terzis G; Toubekis AG
    Int J Sports Physiol Perform; 2020 Jan; 15(1):105-112. PubMed ID: 31034259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Short-Interval and Long-Interval Swimming Protocols on Performance, Aerobic Adaptations, and Technical Parameters: A Training Study.
    Dalamitros AA; Zafeiridis AS; Toubekis AG; Tsalis GA; Pelarigo JG; Manou V; Kellis S
    J Strength Cond Res; 2016 Oct; 30(10):2871-9. PubMed ID: 26849791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of different rest intervals during active or passive recovery on repeated sprint swimming performance.
    Toubekis AG; Douda HT; Tokmakidis SP
    Eur J Appl Physiol; 2005 Mar; 93(5-6):694-700. PubMed ID: 15778899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance and physiological responses to repeated-sprint exercise: a novel multiple-set approach.
    Serpiello FR; McKenna MJ; Stepto NK; Bishop DJ; Aughey RJ
    Eur J Appl Physiol; 2011 Apr; 111(4):669-78. PubMed ID: 20957389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of two different long-sprint training regimens on sprint performance and associated metabolic responses.
    Hanon C; Bernard O; Rabate M; Claire T
    J Strength Cond Res; 2012 Jun; 26(6):1551-7. PubMed ID: 22614143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response of Blood Biomarkers to Sprint Interval Swimming.
    Kabasakalis A; Nikolaidis S; Tsalis G; Mougios V
    Int J Sports Physiol Perform; 2020 Sep; 15(10):1442-1447. PubMed ID: 32963121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.