BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 38133107)

  • 21. Heart Rate Variability After Sprint Interval Training in Cyclists and Implications for Assessing Physical Fatigue.
    Hebisz RG; Hebisz P; Zatoń MW
    J Strength Cond Res; 2022 Feb; 36(2):558-564. PubMed ID: 32304516
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sex Differences in High-Intensity Interval Training-Are HIIT Protocols Interchangeable Between Females and Males?
    Schmitz B; Niehues H; Thorwesten L; Klose A; Krüger M; Brand SM
    Front Physiol; 2020; 11():38. PubMed ID: 32063866
    [No Abstract]   [Full Text] [Related]  

  • 23. Relevance of a Sprint Interval Swim Training Set to the 100-Meter Freestyle Event Based on Blood Lactate and Kinematic Variables.
    Terzi E; Skari A; Nikolaidis S; Papadimitriou K; Kabasakalis A; Mougios V
    J Hum Kinet; 2021 Oct; 80():153-161. PubMed ID: 34868425
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Use of Autonomic Modulation Device to Control Training Performance after High-Intensity Interval Training Program.
    Clemente-Suárez VJ; Arroyo-Toledo JJ
    J Med Syst; 2018 Jan; 42(3):47. PubMed ID: 29372348
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of training volume and repetition distance on session rating of perceived exertion and internal load in swimmers.
    Barroso R; Salgueiro DF; do Carmo EC; Nakamura FY
    Int J Sports Physiol Perform; 2015 Oct; 10(7):848-52. PubMed ID: 25671844
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increased air temperature during repeated-sprint training in hypoxia amplifies changes in muscle oxygenation without decreasing cycling performance.
    Dennis MC; Goods PSR; Binnie MJ; Girard O; Wallman KE; Dawson B; Billaut F; Peeling P
    Eur J Sport Sci; 2023 Jan; 23(1):62-72. PubMed ID: 34743674
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intermittent hypoxic training improves anaerobic performance in competitive swimmers when implemented into a direct competition mesocycle.
    Czuba M; Wilk R; Karpiński J; Chalimoniuk M; Zajac A; Langfort J
    PLoS One; 2017; 12(8):e0180380. PubMed ID: 28763443
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lactate threshold and performance adaptations to 4 weeks of training in untrained swimmers: volume vs. intensity.
    Soultanakis HN; Mandaloufas MF; Platanou TI
    J Strength Cond Res; 2012 Jan; 26(1):131-7. PubMed ID: 22201690
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Blood lactate responses in older swimmers during active and passive recovery following maximal sprint swimming.
    Reaburn PR; Mackinnon LT
    Eur J Appl Physiol Occup Physiol; 1990; 61(3-4):246-50. PubMed ID: 2282908
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Jump height loss as an indicator of fatigue during sprint training.
    Jiménez-Reyes P; Pareja-Blanco F; Cuadrado-Peñafiel V; Ortega-Becerra M; Párraga J; González-Badillo JJ
    J Sports Sci; 2019 May; 37(9):1029-1037. PubMed ID: 30380362
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low-intensity swimming with blood flow restriction over 5 weeks increases VO
    Held S; Rappelt L; Deutsch JP; Rein R; Wiedenmann T; Schiffer A; Bieder A; Staub I; Donath L
    Eur J Sport Sci; 2023 Aug; 23(8):1622-1628. PubMed ID: 36780333
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physiological Responses of Continuous and Intermittent Swimming at Critical Speed and Maximum Lactate Steady State in Children and Adolescent Swimmers.
    Nikitakis IS; Paradisis GP; Bogdanis GC; Toubekis AG
    Sports (Basel); 2019 Jan; 7(1):. PubMed ID: 30669295
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of a 6-Week Period of Polarized or Threshold Training on Performance and Fatigue in Elite Swimmers.
    Pla R; Le Meur Y; Aubry A; Toussaint JF; Hellard P
    Int J Sports Physiol Perform; 2019 Feb; 14(2):183-189. PubMed ID: 30040002
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of pool length on blood lactate, heart rate, and velocity in swimming.
    Keskinen OP; Keskinen KL; Mero AA
    Int J Sports Med; 2007 May; 28(5):407-13. PubMed ID: 17111309
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic responses at various intensities relative to critical swimming velocity.
    Toubekis AG; Tokmakidis SP
    J Strength Cond Res; 2013 Jun; 27(6):1731-41. PubMed ID: 23449237
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physiological and Perceptual Responses to a Single Session of Resisted Sled Sprint Training at Light or Heavy Sled Loads.
    Monahan M; Petrakos G; Egan B
    J Strength Cond Res; 2022 Oct; 36(10):2733-2740. PubMed ID: 36135030
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physiological Responses and Stroke Variables during Arm Stroke Swimming Using Critical Stroke Rate in Competitive Swimmers.
    Funai Y; Matsunami M; Taba S; Takahashi S
    Sports (Basel); 2022 Mar; 10(4):. PubMed ID: 35447856
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of training on the response of androgen plasma concentrations to exercise in swimmers.
    Bonifazi M; Bela E; Carli G; Lodi L; Martelli G; Zhu B; Lupo C
    Eur J Appl Physiol Occup Physiol; 1995; 70(2):109-14. PubMed ID: 7768232
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of session order on the physiological, neuromuscular, and endocrine responses to maximal speed and weight training sessions over a 24-h period.
    Johnston M; Johnston J; Cook CJ; Costley L; Kilgallon M; Kilduff LP
    J Sci Med Sport; 2017 May; 20(5):502-506. PubMed ID: 27036712
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Training Regimes and Recovery Monitoring Practices of Elite British Swimmers.
    Pollock S; Gaoua N; Johnston MJ; Cooke K; Girard O; Mileva KN
    J Sports Sci Med; 2019 Sep; 18(3):577-585. PubMed ID: 31427881
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.