BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 38133514)

  • 21. Glaucomatous optic neuropathy evaluation project: a standardized internet system for assessing skills in optic disc examination.
    Kong YX; Coote MA; O'Neill EC; Gurria LU; Xie J; Garway-Heath D; Medeiros FA; Crowston JG
    Clin Exp Ophthalmol; 2011; 39(4):308-17. PubMed ID: 21070546
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automated vertical cup-to-disc ratio determination from fundus images for glaucoma detection.
    Gao XR; Wu F; Yuhas PT; Rasel RK; Chiariglione M
    Sci Rep; 2024 Feb; 14(1):4494. PubMed ID: 38396048
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep learning assisted detection of glaucomatous optic neuropathy and potential designs for a generalizable model.
    Ko YC; Wey SY; Chen WT; Chang YF; Chen MJ; Chiou SH; Liu CJ; Lee CY
    PLoS One; 2020; 15(5):e0233079. PubMed ID: 32407355
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparing multifocal VEP and standard automated perimetry in high-risk ocular hypertension and early glaucoma.
    Fortune B; Demirel S; Zhang X; Hood DC; Patterson E; Jamil A; Mansberger SL; Cioffi GA; Johnson CA
    Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):1173-80. PubMed ID: 17325161
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection of psychophysical and structural injury in eyes with glaucomatous optic neuropathy and normal standard automated perimetry.
    Bagga H; Feuer WJ; Greenfield DS
    Arch Ophthalmol; 2006 Feb; 124(2):169-76. PubMed ID: 16476885
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glaucomatous optic neuropathy evaluation project: factors associated with underestimation of glaucoma likelihood.
    O'Neill EC; Gurria LU; Pandav SS; Kong YX; Brennan JF; Xie J; Coote MA; Crowston JG
    JAMA Ophthalmol; 2014 May; 132(5):560-6. PubMed ID: 24699817
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of an AI system for the automated detection of glaucoma from stereoscopic optic disc photographs: the European Optic Disc Assessment Study.
    Rogers TW; Jaccard N; Carbonaro F; Lemij HG; Vermeer KA; Reus NJ; Trikha S
    Eye (Lond); 2019 Nov; 33(11):1791-1797. PubMed ID: 31267086
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crowdsourcing to Evaluate Fundus Photographs for the Presence of Glaucoma.
    Wang X; Mudie LI; Baskaran M; Cheng CY; Alward WL; Friedman DS; Brady CJ
    J Glaucoma; 2017 Jun; 26(6):505-510. PubMed ID: 28319525
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Agreement in assessing cup-to-disc ratio measurement among stereoscopic optic nerve head photographs, HRT II, and Stratus OCT.
    Arthur SN; Aldridge AJ; De León-Ortega J; McGwin G; Xie A; Girkin CA
    J Glaucoma; 2006 Jun; 15(3):183-9. PubMed ID: 16778638
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Association between metabolic risk factors and optic disc cupping identified by deep learning method.
    Shin J; Kang MS; Park K; Lee JS
    PLoS One; 2020; 15(9):e0239071. PubMed ID: 32941514
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fred Hollows lecture: digital screening for eye disease.
    Constable IJ; Yogesan K; Eikelboom R; Barry C; Cuypers M
    Clin Exp Ophthalmol; 2000 Jun; 28(3):129-32. PubMed ID: 10981779
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generation of Conventional
    Choi HJ; Seo M; Kim A; Park SH
    Medicina (Kaunas); 2023 Jul; 59(7):. PubMed ID: 37512092
    [No Abstract]   [Full Text] [Related]  

  • 33. Fully automated method for glaucoma screening using robust optic nerve head detection and unsupervised segmentation based cup-to-disc ratio computation in retinal fundus images.
    Mvoulana A; Kachouri R; Akil M
    Comput Med Imaging Graph; 2019 Oct; 77():101643. PubMed ID: 31541937
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generation of
    Ghafari A; Sheikhzadeh P; Seyyedi N; Abbasi M; Farzenefar S; Yousefirizi F; Ay MR; Rahmim A
    Phys Med Biol; 2022 Oct; 67(21):. PubMed ID: 36162408
    [No Abstract]   [Full Text] [Related]  

  • 35. Ultrasound image denoising using generative adversarial networks with residual dense connectivity and weighted joint loss.
    Zhang L; Zhang J
    PeerJ Comput Sci; 2022; 8():e873. PubMed ID: 35494868
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Motion artifact removal in coronary CT angiography based on generative adversarial networks.
    Zhang L; Jiang B; Chen Q; Wang L; Zhao K; Zhang Y; Vliegenthart R; Xie X
    Eur Radiol; 2023 Jan; 33(1):43-53. PubMed ID: 35829786
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Beyond Mutual Information: Generative Adversarial Network for Domain Adaptation Using Information Bottleneck Constraint.
    Chen J; Zhang Z; Xie X; Li Y; Xu T; Ma K; Zheng Y
    IEEE Trans Med Imaging; 2022 Mar; 41(3):595-607. PubMed ID: 34606453
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Image Translation by Ad CycleGAN for COVID-19 X-Ray Images: A New Approach for Controllable GAN.
    Liang Z; Huang JX; Antani S
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36559994
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optic disc and optic cup segmentation based on anatomy guided cascade network.
    Bian X; Luo X; Wang C; Liu W; Lin X
    Comput Methods Programs Biomed; 2020 Dec; 197():105717. PubMed ID: 32957060
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automated segmentation of the optic disc from stereo color photographs using physiologically plausible features.
    Abràmoff MD; Alward WL; Greenlee EC; Shuba L; Kim CY; Fingert JH; Kwon YH
    Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1665-73. PubMed ID: 17389498
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.