These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38134154)

  • 1. Feedback insensitivity in a self-chaotic microcavity laser.
    Dong YX; Li JC; Li YL; Shi Y; Xiao JL; Yang YD; Huang YZ; Chen YL
    Opt Lett; 2024 Jan; 49(1):69-72. PubMed ID: 38134154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chaotic microlasers caused by internal mode interaction for random number generation.
    Ma CG; Xiao JL; Xiao ZX; Yang YD; Huang YZ
    Light Sci Appl; 2022 Jun; 11(1):187. PubMed ID: 35725840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical time domain reflectometry based on a self-chaotic circular-sided microcavity laser.
    Li JC; Dong YX; Lei BJ; Xiao JL; Yang YD; Huang YZ
    Appl Opt; 2024 Jan; 63(1):154-158. PubMed ID: 38175016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Narrow linewidth optical frequency comb based on a directly modulated microcavity laser with optical feedback.
    Wang T; Yang YD; Hao YZ; Zhang ZN; Shi Y; Chen YL; Xiao JL; Huang YZ
    Opt Express; 2023 Apr; 31(8):12200-12211. PubMed ID: 37157384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental investigation on feedback insensitivity in semiconductor ring lasers.
    Li SS; Pusino V; Chan SC; Sorel M
    Opt Lett; 2018 May; 43(9):1974-1977. PubMed ID: 29714724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wideband chaotic tri-mode microlasers with optical feedback.
    Li YL; Ma CG; Xiao JL; Wang T; Wu JL; Yang YD; Huang YZ
    Opt Express; 2022 Jan; 30(2):2122-2130. PubMed ID: 35209359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microcavity- and Microlaser-Based Optical Barcoding: A Review of Encoding Techniques and Applications.
    Anwar AR; Mur M; Humar M
    ACS Photonics; 2023 May; 10(5):1202-1224. PubMed ID: 37215324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brillouin optical correlation domain analysis based on chaotic laser with suppressed time delay signature.
    Zhang J; Feng C; Zhang M; Liu Y; Wu C; Wang Y
    Opt Express; 2018 Mar; 26(6):6962-6972. PubMed ID: 29609382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of laser chaos with wide-band flat power spectrum in a circular-side hexagonal resonator microlaser with optical feedback.
    Wang Y; Jia Z; Gao Z; Xiao J; Wang L; Wang Y; Huang Y; Wang A
    Opt Express; 2020 Jun; 28(12):18507-18515. PubMed ID: 32680048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relative intensity noise of a mid-infrared quantum cascade laser: insensitivity to optical feedback.
    Zhao BB; Wang XG; Zhang J; Wang C
    Opt Express; 2019 Sep; 27(19):26639-26647. PubMed ID: 31674540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical frequency comb and picosecond pulse generation based on a directly modulated microcavity laser.
    Wu JL; Wang T; Yang YD; Xiao JL; Huang YZ
    Appl Opt; 2021 May; 60(14):4177-4184. PubMed ID: 33983170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase-Transition Microcavity Laser.
    Yang X; Tang SJ; Meng JW; Zhang PJ; Chen YL; Xiao YF
    Nano Lett; 2023 Apr; 23(7):3048-3053. PubMed ID: 36946699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photonic generation of ultrawideband signals based on a gain-switched semiconductor laser with optical feedback.
    Zhang M; Liu M; Wang A; Ji Y; Ma Z; Jiang J; Liu T
    Appl Opt; 2013 Nov; 52(31):7512-6. PubMed ID: 24216651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of flat chaos generation using an optical feedback multi-mode laser with a band-pass filter.
    Li P; Cai Q; Zhang J; Xu B; Liu Y; Bogris A; Shore KA; Wang Y
    Opt Express; 2019 Jun; 27(13):17859-17867. PubMed ID: 31252738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of a broadband chaotic laser by active optical feedback loop combined with a high nonlinear fiber.
    Yang Q; Qiao L; Zhang M; Zhang J; Wang T; Gao S; Chai M; Menjabin Mohiuddin P
    Opt Lett; 2020 Apr; 45(7):1750-1753. PubMed ID: 32235990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadband chaos generation utilizing a wavelength-tunable monolithically integrated chaotic semiconductor laser subject to optical feedback.
    Chai M; Qiao L; Wei X; Li S; Zhang C; Wang Q; Xu H; Zhang M
    Opt Express; 2022 Dec; 30(25):44717-44725. PubMed ID: 36522890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-delay signature characteristics of the chaotic output from an optoelectronic oscillator by introducing an optical feedback.
    Liu X; Tang X; Wu Z; Xia G
    Front Optoelectron; 2020 Dec; 13(4):402-408. PubMed ID: 36641560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pump frequency noise coupling into a microcavity by thermo-optic locking.
    Li J; Diddams S; Vahala KJ
    Opt Express; 2014 Jun; 22(12):14559-67. PubMed ID: 24977551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on the method of controlling chaos in an Er-doped fiber dual-ring laser via external optical injection and shifting optical feedback light.
    Senlin Y
    Chaos; 2007 Mar; 17(1):013106. PubMed ID: 17411242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linewidth enhancement factor in semiconductor lasers subject to various external optical feedback conditions.
    Chuang CF; Liao YH; Lin CH; Chen SY; Grillot F; Lin FY
    Opt Express; 2014 Mar; 22(5):5651-8. PubMed ID: 24663906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.