These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38134161)

  • 1. Flexible broadband metamaterial absorber in long-wave infrared with visible transparency fabricated by laser direct writing.
    Xu H; Cheng J; Huang Q; Luo M; Li D; Zhu D; Zhan G; Zheng Q; Zhang Y; Shao J; Wu C
    Opt Lett; 2024 Jan; 49(1):89-92. PubMed ID: 38134161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-mode plasmonic resonance broadband LWIR metamaterial absorber based on lossy metal ring.
    Qin Z; Shi X; Yang F; Hou E; Meng D; Sun C; Dai R; Zhang S; Liu H; Xu H; Liang Z
    Opt Express; 2022 Jan; 30(1):473-483. PubMed ID: 35201223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial.
    Lei L; Li S; Huang H; Tao K; Xu P
    Opt Express; 2018 Mar; 26(5):5686-5693. PubMed ID: 29529770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-area long-wave infrared broadband all-dielectric metasurface absorber based on markless laser direct writing lithography.
    Chen C; Liu Y; Jiang ZY; Shen C; Zhang Y; Zhong F; Chen L; Zhu S; Liu H
    Opt Express; 2022 Apr; 30(8):13391-13403. PubMed ID: 35472952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband infrared plasmonic metamaterial absorber with multipronged absorption mechanisms.
    Fann CH; Zhang J; ElKabbash M; Donaldson WR; Michael Campbell E; Guo C
    Opt Express; 2019 Sep; 27(20):27917-27926. PubMed ID: 31684552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optically Transparent Flexible Broadband Metamaterial Absorber Based on Topology Optimization Design.
    Min P; Song Z; Yang L; Ralchenko VG; Zhu J
    Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broadband infrared metamaterial absorber with visible transparency using ITO as ground plane.
    Dayal G; Ramakrishna SA
    Opt Express; 2014 Jun; 22(12):15104-10. PubMed ID: 24977603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polarization-dependent broadband absorber based on composite metamaterials in the long-wavelength infrared range.
    Yu H; Meng D; Liang Z; Xu H; Qin Z; Su X; Smith DR; Liu Y
    Opt Express; 2021 Oct; 29(22):36111-36120. PubMed ID: 34809030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of metamaterial perfect absorbers in the long-wave infrared region.
    Wang Y; Li X; Wu S; Hu C; Liu Y
    Phys Chem Chem Phys; 2023 Dec; 26(1):551-557. PubMed ID: 38086645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Angle-Insensitive Ultrathin Broadband Visible Absorber Based on Dielectric-Semiconductor-Lossy Metal Film Stacks.
    Ma Y; Hu J; Li W; Yang Z
    Nanomaterials (Basel); 2023 Oct; 13(19):. PubMed ID: 37836367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-broadband perfect absorber using triple-layer nanofilm in a long-wave near-infrared regime.
    Kuang K; Wang Q; Yuan X; Yu L; Liang Y; Zhang Y; Peng W
    Appl Opt; 2022 Sep; 61(26):7706-7712. PubMed ID: 36256371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Perfect Absorber Based on Similar Fabry-Perot Four-Band in the Visible Range.
    Wu P; Zhang C; Tang Y; Liu B; Lv L
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32182723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reverse design of metamaterial absorbers based on an equivalent circuit.
    Wang Y; Xuan X; Wu S; Zhu L; Zhu J; Shen X; Zhang Z; Hu C
    Phys Chem Chem Phys; 2022 Aug; 24(34):20390-20399. PubMed ID: 35983852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrawideband Terahertz Absorber with Dielectric Cylinders Loaded Patterned Graphene Structure.
    Liu S; Li S
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-Broadband Mid-Infrared Metamaterial Absorber Based on Multi-Sized Resonators.
    Huang X; Zhou Z; Cao M; Li R; Sun C; Li X
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadband long-wave infrared metamaterial absorber based on single-sized cut-wire resonators.
    Qin Z; Meng D; Yang F; Shi X; Liang Z; Xu H; Smith DR; Liu Y
    Opt Express; 2021 Jun; 29(13):20275-20285. PubMed ID: 34266120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multipole Resonance in Arrays of Diamond Dielectric: A Metamaterial Perfect Absorber in the Visible Regime.
    Li C; Fan H; Dai Q; Wei Z; Lan S; Liu H
    Nanomaterials (Basel); 2019 Aug; 9(9):. PubMed ID: 31470586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical analysis of an ultra-wideband metamaterial absorber with high absorptivity from visible light to near-infrared.
    Liu J; Ma WZ; Chen W; Yu GX; Chen YS; Deng XC; Yang CF
    Opt Express; 2020 Aug; 28(16):23748-23760. PubMed ID: 32752367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and Parametric Analysis of a Wide-Angle and Polarization Insensitive Ultra-Broadband Metamaterial Absorber for Visible Optical Wavelength Applications.
    Chowdhury MZB; Islam MT; Hoque A; Alshammari AS; Alzamil A; Alsaif H; Alshammari BM; Hossain I; Samsuzzaman M
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A high-performance terahertz absorber based on synthetic-patterned vanadium dioxide metamaterials.
    Xue X; Chen D; Wang X; Wu J; Ying H; Xu B
    Phys Chem Chem Phys; 2022 Dec; 25(1):778-787. PubMed ID: 36507907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.