These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 38134226)
1. Chromosome-level genome assembly of hadal snailfish reveals mechanisms of deep-sea adaptation in vertebrates. Xu W; Zhu C; Gao X; Wu B; Xu H; Hu M; Zeng H; Gan X; Feng C; Zheng J; Bo J; He LS; Qiu Q; Wang W; He S; Wang K Elife; 2023 Dec; 12():. PubMed ID: 38134226 [TBL] [Abstract][Full Text] [Related]
2. Massive Loss of Olfactory Receptors But Not Trace Amine-Associated Receptors in the World's Deepest-Living Fish ( Jiang H; Du K; Gan X; Yang L; He S Genes (Basel); 2019 Nov; 10(11):. PubMed ID: 31717379 [TBL] [Abstract][Full Text] [Related]
4. Microbiomes of Hadal Fishes across Trench Habitats Contain Similar Taxa and Known Piezophiles. Blanton JM; Peoples LM; Gerringer ME; Iacuaniello CM; Gallo ND; Linley TD; Jamieson AJ; Drazen JC; Bartlett DH; Allen EE mSphere; 2022 Apr; 7(2):e0003222. PubMed ID: 35306867 [TBL] [Abstract][Full Text] [Related]
5. Whole genome sequencing of a snailfish from the Yap Trench (~7,000 m) clarifies the molecular mechanisms underlying adaptation to the deep sea. Mu Y; Bian C; Liu R; Wang Y; Shao G; Li J; Qiu Y; He T; Li W; Ao J; Shi Q; Chen X PLoS Genet; 2021 May; 17(5):e1009530. PubMed ID: 33983934 [TBL] [Abstract][Full Text] [Related]
6. Morphology and genome of a snailfish from the Mariana Trench provide insights into deep-sea adaptation. Wang K; Shen Y; Yang Y; Gan X; Liu G; Hu K; Li Y; Gao Z; Zhu L; Yan G; He L; Shan X; Yang L; Lu S; Zeng H; Pan X; Liu C; Yuan Y; Feng C; Xu W; Zhu C; Xiao W; Dong Y; Wang W; Qiu Q; He S Nat Ecol Evol; 2019 May; 3(5):823-833. PubMed ID: 30988486 [TBL] [Abstract][Full Text] [Related]
7. Genome sequencing of Coryphaenoides yaquinae reveals convergent and lineage-specific molecular evolution in deep-sea adaptation. Li W; Song J; Tu H; Jiang S; Pan B; Li J; Zhao Y; Chen L; Xu Q Mol Ecol Resour; 2024 Aug; 24(6):e13989. PubMed ID: 38946220 [TBL] [Abstract][Full Text] [Related]
8. Genomic Analysis Reveals Adaptation of Liang J; Liu J; Wang X; Sun H; Zhang Y; Ju F; Thompson F; Zhang XH Appl Environ Microbiol; 2022 Aug; 88(16):e0057522. PubMed ID: 35916502 [TBL] [Abstract][Full Text] [Related]
9. Genomic Characterization of a Novel Gut Symbiont From the Hadal Snailfish. Lian CA; Yan GY; Huang JM; Danchin A; Wang Y; He LS Front Microbiol; 2019; 10():2978. PubMed ID: 31998265 [TBL] [Abstract][Full Text] [Related]
10. Insights into the vision of the hadal snailfish Pseudoliparis swirei through proteomic analysis of the eye. Yan G; Lian CA; Lan Y; Qian PY; He L Proteomics; 2021 Oct; 21(19):e2100118. PubMed ID: 34329538 [TBL] [Abstract][Full Text] [Related]
11. Pressure tolerance of deep-sea enzymes can be evolved through increasing volume changes in protein transitions: a study with lactate dehydrogenases from abyssal and hadal fishes. Gerringer ME; Yancey PH; Tikhonova OV; Vavilov NE; Zgoda VG; Davydov DR FEBS J; 2020 Dec; 287(24):5394-5410. PubMed ID: 32250538 [TBL] [Abstract][Full Text] [Related]
12. Surviving under pressure. Wang Y; Yang L Elife; 2023 Jul; 12():. PubMed ID: 37436434 [TBL] [Abstract][Full Text] [Related]
13. Novel insights into the Thaumarchaeota in the deepest oceans: their metabolism and potential adaptation mechanisms. Zhong H; Lehtovirta-Morley L; Liu J; Zheng Y; Lin H; Song D; Todd JD; Tian J; Zhang XH Microbiome; 2020 Jun; 8(1):78. PubMed ID: 32482169 [TBL] [Abstract][Full Text] [Related]
14. Geology, environment, and life in the deepest part of the world's oceans. Du M; Peng X; Zhang H; Ye C; Dasgupta S; Li J; Li J; Liu S; Xu H; Chen C; Jing H; Xu H; Liu J; He S; He L; Cai S; Chen S; Ta K Innovation (Camb); 2021 May; 2(2):100109. PubMed ID: 34557759 [TBL] [Abstract][Full Text] [Related]
15. On the Success of the Hadal Snailfishes. Gerringer ME Integr Org Biol; 2019; 1(1):obz004. PubMed ID: 33791521 [TBL] [Abstract][Full Text] [Related]
17. Novel Chloroflexi genomes from the deepest ocean reveal metabolic strategies for the adaptation to deep-sea habitats. Liu R; Wei X; Song W; Wang L; Cao J; Wu J; Thomas T; Jin T; Wang Z; Wei W; Wei Y; Zhai H; Yao C; Shen Z; Du J; Fang J Microbiome; 2022 May; 10(1):75. PubMed ID: 35538590 [TBL] [Abstract][Full Text] [Related]
18. Marine fish may be biochemically constrained from inhabiting the deepest ocean depths. Yancey PH; Gerringer ME; Drazen JC; Rowden AA; Jamieson A Proc Natl Acad Sci U S A; 2014 Mar; 111(12):4461-5. PubMed ID: 24591588 [TBL] [Abstract][Full Text] [Related]
19. High hydrostatic pressure stimulates microbial nitrate reduction in hadal trench sediments under oxic conditions. Yang N; Lv Y; Ji M; Wu S; Zhang Y Nat Commun; 2024 Mar; 15(1):2473. PubMed ID: 38503798 [TBL] [Abstract][Full Text] [Related]
20. Genetic Diversity and Population Structure Analysis of Three Deep-Sea Amphipod Species from Geographically Isolated Hadal Trenches in the Pacific Ocean. Chan J; Pan B; Geng D; Zhang Q; Zhang S; Guo J; Xu Q Biochem Genet; 2020 Feb; 58(1):157-170. PubMed ID: 31410625 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]