These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 38134336)
1. Optically Controlled CRISPR-Cas9 and Cre Recombinase for Spatiotemporal Gene Editing: A Review. Devarajan A ACS Synth Biol; 2024 Jan; 13(1):25-44. PubMed ID: 38134336 [TBL] [Abstract][Full Text] [Related]
2. Near-infrared optogenetic engineering of photothermal nanoCRISPR for programmable genome editing. Chen X; Chen Y; Xin H; Wan T; Ping Y Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2395-2405. PubMed ID: 31941712 [TBL] [Abstract][Full Text] [Related]
3. Recent Updates of the CRISPR/Cas9 Genome Editing System: Novel Approaches to Regulate Its Spatiotemporal Control by Genetic and Physicochemical Strategies. Allemailem KS; Almatroudi A; Rahmani AH; Alrumaihi F; Alradhi AE; Alsubaiyel AM; Algahtani M; Almousa RM; Mahzari A; Sindi AAA; Dobie G; Khan AA Int J Nanomedicine; 2024; 19():5335-5363. PubMed ID: 38859956 [TBL] [Abstract][Full Text] [Related]
4. Smart Strategies for Precise Delivery of CRISPR/Cas9 in Genome Editing. Hasanzadeh A; Noori H; Jahandideh A; Haeri Moghaddam N; Kamrani Mousavi SM; Nourizadeh H; Saeedi S; Karimi M; Hamblin MR ACS Appl Bio Mater; 2022 Feb; 5(2):413-437. PubMed ID: 35040621 [TBL] [Abstract][Full Text] [Related]
5. Spatiotemporal Delivery of CRISPR/Cas9 Genome Editing Machinery Using Stimuli-Responsive Vehicles. Cai W; Luo T; Mao L; Wang M Angew Chem Int Ed Engl; 2021 Apr; 60(16):8596-8606. PubMed ID: 32385892 [TBL] [Abstract][Full Text] [Related]
6. Optical Control of a CRISPR/Cas9 System for Gene Editing by Using Photolabile crRNA. Zhang Y; Ling X; Su X; Zhang S; Wang J; Zhang P; Feng W; Zhu YY; Liu T; Tang X Angew Chem Int Ed Engl; 2020 Nov; 59(47):20895-20899. PubMed ID: 33448579 [TBL] [Abstract][Full Text] [Related]
7. Error-free recombination in sugarcane mediated by only 30 nucleotides of homology and CRISPR/Cas9 induced DNA breaks or Cre-recombinase. Zhao Y; Karan R; Altpeter F Biotechnol J; 2021 Jun; 16(6):e2000650. PubMed ID: 33710783 [TBL] [Abstract][Full Text] [Related]
8. Spatiotemporal Control of CRISPR/Cas9 Function in Cells and Zebrafish using Light-Activated Guide RNA. Zhou W; Brown W; Bardhan A; Delaney M; Ilk AS; Rauen RR; Kahn SI; Tsang M; Deiters A Angew Chem Int Ed Engl; 2020 Jun; 59(23):8998-9003. PubMed ID: 32160370 [TBL] [Abstract][Full Text] [Related]
10. CRISPR/Cas9-mediated targeting of the Rosa26 locus produces Cre reporter rat strains for monitoring Cre-loxP-mediated lineage tracing. Ma Y; Yu L; Pan S; Gao S; Chen W; Zhang X; Dong W; Li J; Zhou R; Huang L; Han Y; Bai L; Zhang L; Zhang L FEBS J; 2017 Oct; 284(19):3262-3277. PubMed ID: 28763160 [TBL] [Abstract][Full Text] [Related]
11. The establishment of multiple knockout mutants of Colletotrichum orbiculare by CRISPR-Cas9 and Cre-loxP systems. Yamada K; Yamamoto T; Uwasa K; Osakabe K; Takano Y Fungal Genet Biol; 2023 Mar; 165():103777. PubMed ID: 36669556 [TBL] [Abstract][Full Text] [Related]
12. Bacterial genome editing by coupling Cre-lox and CRISPR-Cas9 systems. Liu H; Robinson DS; Wu ZY; Kuo R; Yoshikuni Y; Blaby IK; Cheng JF PLoS One; 2020; 15(11):e0241867. PubMed ID: 33147260 [TBL] [Abstract][Full Text] [Related]
13. Lentiviral Vectors for Delivery of Gene-Editing Systems Based on CRISPR/Cas: Current State and Perspectives. Dong W; Kantor B Viruses; 2021 Jul; 13(7):. PubMed ID: 34372494 [TBL] [Abstract][Full Text] [Related]
14. Generation and comparison of CRISPR-Cas9 and Cre-mediated genetically engineered mouse models of sarcoma. Huang J; Chen M; Whitley MJ; Kuo HC; Xu ES; Walens A; Mowery YM; Van Mater D; Eward WC; Cardona DM; Luo L; Ma Y; Lopez OM; Nelson CE; Robinson-Hamm JN; Reddy A; Dave SS; Gersbach CA; Dodd RD; Kirsch DG Nat Commun; 2017 Jul; 8():15999. PubMed ID: 28691711 [TBL] [Abstract][Full Text] [Related]
15. Highly efficient genome editing in N. gerenzanensis using an inducible CRISPR/Cas9-RecA system. Yue X; Xia T; Wang S; Dong H; Li Y Biotechnol Lett; 2020 Sep; 42(9):1699-1706. PubMed ID: 32314149 [TBL] [Abstract][Full Text] [Related]
16. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity. Tadić V; Josipović G; Zoldoš V; Vojta A Methods; 2019 Jul; 164-165():109-119. PubMed ID: 31071448 [TBL] [Abstract][Full Text] [Related]
17. Rapid and tunable method to temporally control gene editing based on conditional Cas9 stabilization. Senturk S; Shirole NH; Nowak DG; Corbo V; Pal D; Vaughan A; Tuveson DA; Trotman LC; Kinney JB; Sordella R Nat Commun; 2017 Feb; 8():14370. PubMed ID: 28224990 [TBL] [Abstract][Full Text] [Related]
18. CRISPR-Switch regulates sgRNA activity by Cre recombination for sequential editing of two loci. Chylinski K; Hubmann M; Hanna RE; Yanchus C; Michlits G; Uijttewaal ECH; Doench J; Schramek D; Elling U Nat Commun; 2019 Nov; 10(1):5454. PubMed ID: 31784531 [TBL] [Abstract][Full Text] [Related]
19. Biomaterial-assisted targeted and controlled delivery of CRISPR/Cas9 for precise gene editing. Iqbal Z; Rehman K; Xia J; Shabbir M; Zaman M; Liang Y; Duan L Biomater Sci; 2023 May; 11(11):3762-3783. PubMed ID: 37102700 [TBL] [Abstract][Full Text] [Related]
20. A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum. Wang B; Hu Q; Zhang Y; Shi R; Chai X; Liu Z; Shang X; Zhang Y; Wen T Microb Cell Fact; 2018 Apr; 17(1):63. PubMed ID: 29685154 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]