These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 38134424)

  • 1. GeNNius: an ultrafast drug-target interaction inference method based on graph neural networks.
    Veleiro U; de la Fuente J; Serrano G; Pizurica M; Casals M; Pineda-Lucena A; Vicent S; Ochoa I; Gevaert O; Hernaez M
    Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38134424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DTI-HETA: prediction of drug-target interactions based on GCN and GAT on heterogeneous graph.
    Shao K; Zhang Y; Wen Y; Zhang Z; He S; Bo X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35380622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iNGNN-DTI: prediction of drug-target interaction with interpretable nested graph neural network and pretrained molecule models.
    Sun Y; Li YY; Leung CK; Hu P
    Bioinformatics; 2024 Mar; 40(3):. PubMed ID: 38449285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metapath-aggregated heterogeneous graph neural network for drug-target interaction prediction.
    Li M; Cai X; Xu S; Ji H
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36592060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IMCHGAN: Inductive Matrix Completion With Heterogeneous Graph Attention Networks for Drug-Target Interactions Prediction.
    Li J; Wang J; Lv H; Zhang Z; Wang Z
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):655-665. PubMed ID: 34115592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MHADTI: predicting drug-target interactions via multiview heterogeneous information network embedding with hierarchical attention mechanisms.
    Tian Z; Peng X; Fang H; Zhang W; Dai Q; Ye Y
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36242566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pre-training graph neural networks for link prediction in biomedical networks.
    Long Y; Wu M; Liu Y; Fang Y; Kwoh CK; Chen J; Luo J; Li X
    Bioinformatics; 2022 Apr; 38(8):2254-2262. PubMed ID: 35171981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FuseLinker: Leveraging LLM's pre-trained text embeddings and domain knowledge to enhance GNN-based link prediction on biomedical knowledge graphs.
    Xiao Y; Zhang S; Zhou H; Li M; Yang H; Zhang R
    J Biomed Inform; 2024 Oct; 158():104730. PubMed ID: 39326691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GraphormerDTI: A graph transformer-based approach for drug-target interaction prediction.
    Gao M; Zhang D; Chen Y; Zhang Y; Wang Z; Wang X; Li S; Guo Y; Webb GI; Nguyen ATN; May L; Song J
    Comput Biol Med; 2024 May; 173():108339. PubMed ID: 38547658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semi-supervised heterogeneous graph contrastive learning for drug-target interaction prediction.
    Yao K; Wang X; Li W; Zhu H; Jiang Y; Li Y; Tian T; Yang Z; Liu Q; Liu Q
    Comput Biol Med; 2023 Sep; 163():107199. PubMed ID: 37421738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DTiGNN: Learning drug-target embedding from a heterogeneous biological network based on a two-level attention-based graph neural network.
    Muniyappan S; Rayan AXA; Varrieth GT
    Math Biosci Eng; 2023 Mar; 20(5):9530-9571. PubMed ID: 37161255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iGRLDTI: an improved graph representation learning method for predicting drug-target interactions over heterogeneous biological information network.
    Zhao BW; Su XR; Hu PW; Huang YA; You ZH; Hu L
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37505483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug-target interaction predication via multi-channel graph neural networks.
    Li Y; Qiao G; Wang K; Wang G
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34661237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DTI-Voodoo: machine learning over interaction networks and ontology-based background knowledge predicts drug-target interactions.
    Hinnerichs T; Hoehndorf R
    Bioinformatics; 2021 Dec; 37(24):4835-4843. PubMed ID: 34320178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GCHN-DTI: Predicting drug-target interactions by graph convolution on heterogeneous networks.
    Wang W; Liang S; Yu M; Liu D; Zhang H; Wang X; Zhou Y
    Methods; 2022 Oct; 206():101-107. PubMed ID: 36058415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DTI-HeNE: a novel method for drug-target interaction prediction based on heterogeneous network embedding.
    Yue Y; He S
    BMC Bioinformatics; 2021 Sep; 22(1):418. PubMed ID: 34479477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graph embedding on biomedical networks: methods, applications and evaluations.
    Yue X; Wang Z; Huang J; Parthasarathy S; Moosavinasab S; Huang Y; Lin SM; Zhang W; Zhang P; Sun H
    Bioinformatics; 2020 Feb; 36(4):1241-1251. PubMed ID: 31584634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug-Target Prediction Based on Dynamic Heterogeneous Graph Convolutional Network.
    Xu P; Wei Z; Li C; Yuan J; Liu Z; Liu W
    IEEE J Biomed Health Inform; 2024 Nov; 28(11):6997-7005. PubMed ID: 39120984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GSL-DTI: Graph structure learning network for Drug-Target interaction prediction.
    E Z; Qiao G; Wang G; Li Y
    Methods; 2024 Mar; 223():136-145. PubMed ID: 38360082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiview network embedding for drug-target Interactions prediction by consistent and complementary information preserving.
    Shang Y; Ye X; Futamura Y; Yu L; Sakurai T
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35262678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.