These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 38134424)

  • 21. Identifying drug-target interactions based on graph convolutional network and deep neural network.
    Zhao T; Hu Y; Valsdottir LR; Zang T; Peng J
    Brief Bioinform; 2021 Mar; 22(2):2141-2150. PubMed ID: 32367110
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Novel Deep Neural Network Technique for Drug-Target Interaction.
    de Souza JG; Fernandes MAC; de Melo Barbosa R
    Pharmaceutics; 2022 Mar; 14(3):. PubMed ID: 35336000
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Graph-based prediction of Protein-protein interactions with attributed signed graph embedding.
    Yang F; Fan K; Song D; Lin H
    BMC Bioinformatics; 2020 Jul; 21(1):323. PubMed ID: 32693790
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A heterogeneous network embedding framework for predicting similarity-based drug-target interactions.
    An Q; Yu L
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34373895
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Supervised graph co-contrastive learning for drug-target interaction prediction.
    Li Y; Qiao G; Gao X; Wang G
    Bioinformatics; 2022 May; 38(10):2847-2854. PubMed ID: 35561181
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Biological Feature and Heterogeneous Network Representation Learning-Based Framework for Drug-Target Interaction Prediction.
    Liu L; Zhang Q; Wei Y; Zhao Q; Liao B
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764321
    [TBL] [Abstract][Full Text] [Related]  

  • 27. EmbedDTI: Enhancing the Molecular Representations via Sequence Embedding and Graph Convolutional Network for the Prediction of Drug-Target Interaction.
    Jin Y; Lu J; Shi R; Yang Y
    Biomolecules; 2021 Nov; 11(12):. PubMed ID: 34944427
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions.
    Wan F; Hong L; Xiao A; Jiang T; Zeng J
    Bioinformatics; 2019 Jan; 35(1):104-111. PubMed ID: 30561548
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identifying drug-target interactions via heterogeneous graph attention networks combined with cross-modal similarities.
    Jiang L; Sun J; Wang Y; Ning Q; Luo N; Yin M
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35224614
    [TBL] [Abstract][Full Text] [Related]  

  • 30. HGDTI: predicting drug-target interaction by using information aggregation based on heterogeneous graph neural network.
    Yu L; Qiu W; Lin W; Cheng X; Xiao X; Dai J
    BMC Bioinformatics; 2022 Apr; 23(1):126. PubMed ID: 35413800
    [TBL] [Abstract][Full Text] [Related]  

  • 31. REDDA: Integrating multiple biological relations to heterogeneous graph neural network for drug-disease association prediction.
    Gu Y; Zheng S; Yin Q; Jiang R; Li J
    Comput Biol Med; 2022 Nov; 150():106127. PubMed ID: 36182762
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative analysis of network-based approaches and machine learning algorithms for predicting drug-target interactions.
    Jung YS; Kim Y; Cho YR
    Methods; 2022 Feb; 198():19-31. PubMed ID: 34737033
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Graph Convolutional Autoencoder and Generative Adversarial Network-Based Method for Predicting Drug-Target Interactions.
    Sun C; Xuan P; Zhang T; Ye Y
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):455-464. PubMed ID: 32750854
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting lncRNA-protein interactions with bipartite graph embedding and deep graph neural networks.
    Ma Y; Zhang H; Jin C; Kang C
    Front Genet; 2023; 14():1136672. PubMed ID: 36845380
    [No Abstract]   [Full Text] [Related]  

  • 35. A Multimodal Framework for Improving in Silico Drug Repositioning With the Prior Knowledge From Knowledge Graphs.
    Xiong Z; Huang F; Wang Z; Liu S; Zhang W
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(5):2623-2631. PubMed ID: 34375284
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A survey of drug-target interaction and affinity prediction methods via graph neural networks.
    Zhang Y; Hu Y; Han N; Yang A; Liu X; Cai H
    Comput Biol Med; 2023 Sep; 163():107136. PubMed ID: 37329615
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting drug-protein interactions by preserving the graph information of multi source data.
    Wei J; Lu L; Shen T
    BMC Bioinformatics; 2024 Jan; 25(1):10. PubMed ID: 38177981
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A heterogeneous network-based method with attentive meta-path extraction for predicting drug-target interactions.
    Wang H; Huang F; Xiong Z; Zhang W
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35641162
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An end-to-end heterogeneous graph representation learning-based framework for drug-target interaction prediction.
    Peng J; Wang Y; Guan J; Li J; Han R; Hao J; Wei Z; Shang X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33517357
    [TBL] [Abstract][Full Text] [Related]  

  • 40. AMGDTI: drug-target interaction prediction based on adaptive meta-graph learning in heterogeneous network.
    Su Y; Hu Z; Wang F; Bin Y; Zheng C; Li H; Chen H; Zeng X
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38145949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.