These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 38134442)

  • 1.
    Malenfant-Thuot O; Morinière M; Côté M
    Nanotechnology; 2024 Jan; 35(13):. PubMed ID: 38134442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intercalation of Au Atoms into SiC(0001)/Buffer Interfaces-A First-Principles Density Functional Theory Study.
    Bayani A; Larsson K
    ACS Omega; 2020 Jun; 5(24):14842-14846. PubMed ID: 32596622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning aromaticity patterns and electronic properties of armchair graphene nanoribbons with chemical edge functionalisation.
    Martin-Martinez FJ; Fias S; Van Lier G; De Proft F; Geerlings P
    Phys Chem Chem Phys; 2013 Aug; 15(30):12637-47. PubMed ID: 23787877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rules of boron-nitrogen doping in defect graphene sheets: a first-principles investigation of band-gap tuning and oxygen reduction reaction catalysis capabilities.
    Sen D; Thapa R; Chattopadhyay KK
    Chemphyschem; 2014 Aug; 15(12):2542-9. PubMed ID: 24910355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revisiting the Volmer-Heyrovský mechanism of hydrogen evolution on a nitrogen doped carbon nanotube: constrained molecular dynamics versus the nudged elastic band method.
    Kronberg R; Lappalainen H; Laasonen K
    Phys Chem Chem Phys; 2020 May; 22(19):10536-10549. PubMed ID: 31998914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab initio calculations of the reaction pathways for methane decomposition over the Cu (111) surface.
    Gajewski G; Pao CW
    J Chem Phys; 2011 Aug; 135(6):064707. PubMed ID: 21842949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dehydrogenation of butane on metal-free graphene.
    Brooks A; Jenkins SJ; Wrabetz S; McGregor J; Sacchi M
    J Colloid Interface Sci; 2022 Aug; 619():377-387. PubMed ID: 35398768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A DFT study of halogen atoms adsorbed on graphene layers.
    Medeiros PV; Mascarenhas AJ; de Brito Mota F; de Castilho CM
    Nanotechnology; 2010 Dec; 21(48):485701. PubMed ID: 21063056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lithium Diffusion in Silicon Encapsulated with Graphene.
    Qin W; Lu WC; Xue XY; Ho KM; Wang CZ
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational study of graphene growth on copper by first-principles and kinetic Monte Carlo calculations.
    Taioli S
    J Mol Model; 2014 Jul; 20(7):2260. PubMed ID: 24939464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene Nucleation Preference at CuO Defects Rather Than Cu
    Sun X; Su Z; Zhang J; Liu X; Li Y; Yu F; Cheng X; Zhao X
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):43156-43165. PubMed ID: 30396269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular-dynamics-based study of the collisions of hyperthermal atomic oxygen with graphene using the ReaxFF reactive force field.
    Srinivasan SG; van Duin AC
    J Phys Chem A; 2011 Nov; 115(46):13269-80. PubMed ID: 21942282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon-Based Band Gap Engineering in the h-BN Analytical Modeling.
    Ahmadi MT; Razmdideh A; Rahimian Koloor SS; Petrů M
    Materials (Basel); 2020 Feb; 13(5):. PubMed ID: 32106402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is it possible to dope single-walled carbon nanotubes and graphene with sulfur?
    Denis PA; Faccio R; Mombru AW
    Chemphyschem; 2009 Mar; 10(4):715-22. PubMed ID: 19189365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon monoxide-tolerant platinum nanoparticle catalysts on defect-engineered graphene.
    Kim G; Jhi SH
    ACS Nano; 2011 Feb; 5(2):805-10. PubMed ID: 21204582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen adsorption on boron doped graphene: an ab initio study.
    Miwa RH; Martins TB; Fazzio A
    Nanotechnology; 2008 Apr; 19(15):155708. PubMed ID: 21825632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen Evolution Reaction Kinetic Barriers on Nitrogen-Doped Carbon Nanotubes.
    Partanen L; Murdachaew G; Laasonen K
    J Phys Chem C Nanomater Interfaces; 2018 Jun; 122(24):12892-12899. PubMed ID: 30405870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Li diffusion through doped and defected graphene.
    Das D; Kim S; Lee KR; Singh AK
    Phys Chem Chem Phys; 2013 Sep; 15(36):15128-34. PubMed ID: 23925460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A density functional theory study on the adsorption reaction mechanism of double CO
    Zhang S; Liang Z; Li K; Zhang J; Ren S
    J Mol Model; 2022 Apr; 28(5):118. PubMed ID: 35412080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-principles study of Ni adatom migration on graphene with vacancies.
    Hernández-Vázquez EE; Munoz F; López-Moreno S; Morán-López JL
    RSC Adv; 2019 Jun; 9(33):18823-18834. PubMed ID: 35516868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.