These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Predicting in vivo phospholipidosis-inducing potential of drugs by a combined high content screening and in silico modelling approach. Bauch C; Bevan S; Woodhouse H; Dilworth C; Walker P Toxicol In Vitro; 2015 Apr; 29(3):621-30. PubMed ID: 25668432 [TBL] [Abstract][Full Text] [Related]
3. From the Cover: Potentiation of Drug-Induced Phospholipidosis In Vitro through PEGlyated Graphene Oxide as the Nanocarrier. Yang L; Zhong X; Li Q; Zhang X; Wang Y; Yang K; Zhang LW Toxicol Sci; 2017 Mar; 156(1):39-53. PubMed ID: 28013220 [TBL] [Abstract][Full Text] [Related]
5. High content screening analysis of phospholipidosis: validation of a 96-well assay with CHO-K1 and HepG2 cells for the prediction of in vivo based phospholipidosis. van de Water FM; Havinga J; Ravesloot WT; Horbach GJ; Schoonen WG Toxicol In Vitro; 2011 Dec; 25(8):1870-82. PubMed ID: 21651975 [TBL] [Abstract][Full Text] [Related]
6. A machine learning and live-cell imaging tool kit uncovers small molecules induced phospholipidosis. Hu H; Tjaden A; Knapp S; Antolin AA; Müller S Cell Chem Biol; 2023 Dec; 30(12):1634-1651.e6. PubMed ID: 37797617 [TBL] [Abstract][Full Text] [Related]
7. ALPACA: A machine Learning Platform for Affinity and selectivity profiling of CAnnabinoids receptors modulators. Delre P; Contino M; Alberga D; Saviano M; Corriero N; Mangiatordi GF Comput Biol Med; 2023 Sep; 164():107314. PubMed ID: 37572442 [TBL] [Abstract][Full Text] [Related]
8. Hepatic cells derived from human skin progenitors show a typical phospholipidotic response upon exposure to amiodarone. Natale A; Boeckmans J; Desmae T; De Boe V; De Kock J; Vanhaecke T; Rogiers V; Rodrigues RM Toxicol Lett; 2018 Mar; 284():184-194. PubMed ID: 29248575 [TBL] [Abstract][Full Text] [Related]
9. Predicting the Risk of Phospholipidosis with in Silico Models and an Image-Based in Vitro Screen. Fusani L; Brown M; Chen H; Ahlberg E; Noeske T Mol Pharm; 2017 Dec; 14(12):4346-4352. PubMed ID: 29077420 [TBL] [Abstract][Full Text] [Related]
10. Identification of drugs inducing phospholipidosis by novel in vitro data. Muehlbacher M; Tripal P; Roas F; Kornhuber J ChemMedChem; 2012 Nov; 7(11):1925-34. PubMed ID: 22945602 [TBL] [Abstract][Full Text] [Related]
11. Monitoring the accumulation of fluorescently labeled phospholipids in cell cultures provides an accurate screen for drugs that induce phospholipidosis. Nioi P; Pardo ID; Snyder RD Drug Chem Toxicol; 2008; 31(4):515-28. PubMed ID: 18850360 [TBL] [Abstract][Full Text] [Related]
13. Liposome electrokinetic chromatography based in vitro model for early screening of the drug-induced phospholipidosis risk. Wang T; Feng Y; Jin X; Fan X; Crommen J; Jiang Z J Pharm Biomed Anal; 2014 Aug; 96():263-71. PubMed ID: 24814828 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the phospholipidogenic potential of 4(1H)-pyridone antimalarial derivatives. Almela MJ; Torres PA; Lozano S; Herreros E Toxicol In Vitro; 2009 Dec; 23(8):1528-34. PubMed ID: 19540329 [TBL] [Abstract][Full Text] [Related]
15. Quantitative Assessment of Drug Delivery to Tissues and Association with Phospholipidosis: A Case Study with Two Structurally Related Diamines in Development. Loryan I; Hoppe E; Hansen K; Held F; Kless A; Linz K; Marossek V; Nolte B; Ratcliffe P; Saunders D; Terlinden R; Wegert A; Welbers A; Will O; Hammarlund-Udenaes M Mol Pharm; 2017 Dec; 14(12):4362-4373. PubMed ID: 29099189 [TBL] [Abstract][Full Text] [Related]