These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 38134520)

  • 1. Revealing protein trafficking by proximity labeling-based proteomics.
    Wang Y; Qin W
    Bioorg Chem; 2024 Feb; 143():107041. PubMed ID: 38134520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic mapping of proteome trafficking within and between living cells by TransitID.
    Qin W; Cheah JS; Xu C; Messing J; Freibaum BD; Boeynaems S; Taylor JP; Udeshi ND; Carr SA; Ting AY
    Cell; 2023 Jul; 186(15):3307-3324.e30. PubMed ID: 37385249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic tandem proximity-based proteomics-Protein trafficking at the proteome-scale.
    Chevet E; De Matteis MA; Eskelinen EL; Farhan H
    Traffic; 2023 Nov; 24(11):546-548. PubMed ID: 37581229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotinylation-based proximity labelling proteomics: basics, applications and technical considerations.
    Niinae T; Ishihama Y; Imami K
    J Biochem; 2021 Dec; 170(5):569-576. PubMed ID: 34752609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advancements in Subcellular Proteomics: Growing Impact of Organellar Protein Niches on the Understanding of Cell Biology.
    Bhushan V; Nita-Lazar A
    J Proteome Res; 2024 Aug; 23(8):2700-2722. PubMed ID: 38451675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proximity labeling approaches to study protein complexes during virus infection.
    Zapatero-Belinchón FJ; Carriquí-Madroñal B; Gerold G
    Adv Virus Res; 2021; 109():63-104. PubMed ID: 33934830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic mapping of proteome trafficking within and between living cells by TransitID.
    Xu WQ; Cheah JS; Xu C; Messing J; Freibaum BD; Boeynaems S; Taylor JP; Udeshi ND; Carr SA; Ting AY
    bioRxiv; 2023 Feb; ():. PubMed ID: 36798302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proximity Labeling in Plants.
    Xu SL; Shrestha R; Karunadasa SS; Xie PQ
    Annu Rev Plant Biol; 2023 May; 74():285-312. PubMed ID: 36854476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial proteomics of vesicular trafficking: coupling mass spectrometry and imaging approaches in membrane biology.
    Zhang L; Liang X; Takáč T; Komis G; Li X; Zhang Y; Ovečka M; Chen Y; Šamaj J
    Plant Biotechnol J; 2023 Feb; 21(2):250-269. PubMed ID: 36204821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organellar Maps Through Proteomic Profiling - A Conceptual Guide.
    Borner GHH
    Mol Cell Proteomics; 2020 Jul; 19(7):1076-1087. PubMed ID: 32345598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical proteomics for subcellular proteome analysis.
    Zhu H; Tamura T; Hamachi I
    Curr Opin Chem Biol; 2019 Feb; 48():1-7. PubMed ID: 30170243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proximity-dependent labeling methods for proteomic profiling in living cells.
    Chen CL; Perrimon N
    Wiley Interdiscip Rev Dev Biol; 2017 Jul; 6(4):. PubMed ID: 28387482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Mass Spectrometry-Based Approach for Mapping Protein Subcellular Localization Reveals the Spatial Proteome of Mouse Primary Neurons.
    Itzhak DN; Davies C; Tyanova S; Mishra A; Williamson J; Antrobus R; Cox J; Weekes MP; Borner GHH
    Cell Rep; 2017 Sep; 20(11):2706-2718. PubMed ID: 28903049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A proximity proteomics pipeline with improved reproducibility and throughput.
    Zhong X; Li Q; Polacco BJ; Patil T; Marley A; Foussard H; Khare P; Vartak R; Xu J; DiBerto JF; Roth BL; Eckhardt M; von Zastrow M; Krogan NJ; Hüttenhain R
    Mol Syst Biol; 2024 Aug; 20(8):952-971. PubMed ID: 38951684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mass spectrometry-based methods for analysing the mitochondrial interactome in mammalian cells.
    Koshiba T; Kosako H
    J Biochem; 2020 Mar; 167(3):225-231. PubMed ID: 31647556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proximity-dependent labeling methods for proteomic profiling in living cells: An update.
    Bosch JA; Chen CL; Perrimon N
    Wiley Interdiscip Rev Dev Biol; 2021 Jan; 10(1):e392. PubMed ID: 32909689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic Organellar Maps for Spatial Proteomics.
    Itzhak DN; Schessner JP; Borner GHH
    Curr Protoc Cell Biol; 2019 Jun; 83(1):e81. PubMed ID: 30489039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of organelle-associated protein profiling.
    Yan W; Aebersold R; Raines EW
    J Proteomics; 2009 Feb; 72(1):4-11. PubMed ID: 19110081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the Phagosome Proteome by Quantitative Mass Spectrometry.
    Peltier J; Härtlova A; Trost M
    Methods Mol Biol; 2017; 1519():249-263. PubMed ID: 27815885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organellar proteomics: turning inventories into insights.
    Andersen JS; Mann M
    EMBO Rep; 2006 Sep; 7(9):874-9. PubMed ID: 16953200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.