These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Machine learning methods to predict 30-day hospital readmission outcome among US adults with pneumonia: analysis of the national readmission database. Huang Y; Talwar A; Lin Y; Aparasu RR BMC Med Inform Decis Mak; 2022 Nov; 22(1):288. PubMed ID: 36352392 [TBL] [Abstract][Full Text] [Related]
3. Validation of the HOSPITAL score as predictor of 30-day potentially avoidable readmissions in pediatric hospitalized population: retrospective cohort study. da Silva NC; Albertini MK; Backes AR; das Graças Pena G Eur J Pediatr; 2023 Apr; 182(4):1579-1585. PubMed ID: 36693994 [TBL] [Abstract][Full Text] [Related]
4. Predictive modeling for 14-day unplanned hospital readmission risk by using machine learning algorithms. Lo YT; Liao JC; Chen MH; Chang CM; Li CT BMC Med Inform Decis Mak; 2021 Oct; 21(1):288. PubMed ID: 34670553 [TBL] [Abstract][Full Text] [Related]
5. Evaluating machine learning algorithms to Predict 30-day Unplanned REadmission (PURE) in Urology patients. Welvaars K; van den Bekerom MPJ; Doornberg JN; van Haarst EP; BMC Med Inform Decis Mak; 2023 Jun; 23(1):108. PubMed ID: 37312177 [TBL] [Abstract][Full Text] [Related]
6. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction? Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466 [TBL] [Abstract][Full Text] [Related]
7. Comparison of Machine Learning Algorithms for Predicting Hospital Readmissions and Worsening Heart Failure Events in Patients With Heart Failure With Reduced Ejection Fraction: Modeling Study. Ru B; Tan X; Liu Y; Kannapur K; Ramanan D; Kessler G; Lautsch D; Fonarow G JMIR Form Res; 2023 Apr; 7():e41775. PubMed ID: 37067873 [TBL] [Abstract][Full Text] [Related]
8. Machine Learning-Enabled 30-Day Readmission Model for Stroke Patients. Darabi N; Hosseinichimeh N; Noto A; Zand R; Abedi V Front Neurol; 2021; 12():638267. PubMed ID: 33868147 [No Abstract] [Full Text] [Related]
9. Machine learning and LACE index for predicting 30-day readmissions after heart failure hospitalization in elderly patients. Polo Friz H; Esposito V; Marano G; Primitz L; Bovio A; Delgrossi G; Bombelli M; Grignaffini G; Monza G; Boracchi P Intern Emerg Med; 2022 Sep; 17(6):1727-1737. PubMed ID: 35661313 [TBL] [Abstract][Full Text] [Related]
10. Prediction of Major Complications and Readmission After Lumbar Spinal Fusion: A Machine Learning-Driven Approach. Shah AA; Devana SK; Lee C; Bugarin A; Lord EL; Shamie AN; Park DY; van der Schaar M; SooHoo NF World Neurosurg; 2021 Aug; 152():e227-e234. PubMed ID: 34058366 [TBL] [Abstract][Full Text] [Related]
11. How Good Is Machine Learning in Predicting All-Cause 30-Day Hospital Readmission? Evidence From Administrative Data. Li Q; Yao X; Échevin D Value Health; 2020 Oct; 23(10):1307-1315. PubMed ID: 33032774 [TBL] [Abstract][Full Text] [Related]
12. Extreme Gradient Boosting Model Has a Better Performance in Predicting the Risk of 90-Day Readmissions in Patients with Ischaemic Stroke. Xu Y; Yang X; Huang H; Peng C; Ge Y; Wu H; Wang J; Xiong G; Yi Y J Stroke Cerebrovasc Dis; 2019 Dec; 28(12):104441. PubMed ID: 31627995 [TBL] [Abstract][Full Text] [Related]
13. Decision tree model development and in silico validation for avoidable hospital readmissions at 30 days in a pediatric population. Silva NC; Amaral LRD; Gomes MS; Bertarini PLL; Albertini MK; Backes AR; Pena GDG Nutr Hosp; 2024 Dec; 41(6):1180-1187. PubMed ID: 39311012 [TBL] [Abstract][Full Text] [Related]
14. Identification of Factors Associated With 30-day Readmissions After Posterior Lumbar Fusion Using Machine Learning and Traditional Models: A National Longitudinal Database Study. Rezaii PG; Herrick D; Ratliff JK; Rusu M; Scheinker D; Desai AM Spine (Phila Pa 1976); 2023 Sep; 48(17):1224-1233. PubMed ID: 37027190 [TBL] [Abstract][Full Text] [Related]
15. [Construction of a predictive model for in-hospital mortality of sepsis patients in intensive care unit based on machine learning]. Zhu M; Hu C; He Y; Qian Y; Tang S; Hu Q; Hao C Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2023 Jul; 35(7):696-701. PubMed ID: 37545445 [TBL] [Abstract][Full Text] [Related]
16. [Application of machine learning model based on XGBoost algorithm in early prediction of patients with acute severe pancreatitis]. Gao X; Lin J; Wu A; Gu H; Liu X; Yin M; Zhou Z; Zhang R; Xu C; Zhu J Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2023 Apr; 35(4):421-426. PubMed ID: 37308200 [TBL] [Abstract][Full Text] [Related]
17. Clinical Timing-Sequence Warning Models for Serious Bacterial Infections in Adults Based on Machine Learning: Retrospective Study. Liu J; Chen J; Dong Y; Lou Y; Tian Y; Sun H; Jin Y; Li J; Qiu Y J Med Internet Res; 2023 Dec; 25():e45515. PubMed ID: 38109177 [TBL] [Abstract][Full Text] [Related]
18. Machine learning constructs a diagnostic prediction model for calculous pyonephrosis. Yang B; Zhong J; Yang Y; Xu J; Liu H; Liu J Urolithiasis; 2024 Jun; 52(1):96. PubMed ID: 38896174 [TBL] [Abstract][Full Text] [Related]
19. Predicting hospital readmission in patients with mental or substance use disorders: A machine learning approach. Morel D; Yu KC; Liu-Ferrara A; Caceres-Suriel AJ; Kurtz SG; Tabak YP Int J Med Inform; 2020 Jul; 139():104136. PubMed ID: 32353752 [TBL] [Abstract][Full Text] [Related]