These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38134674)

  • 1. Phase transition and gelation in cellulose nanocrystal-based aqueous suspensions studied by SANS.
    Xu Y; Gilbert EP; Sokolova A; Stokes JR
    J Colloid Interface Sci; 2024 Mar; 658():660-670. PubMed ID: 38134674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of nanocrystalline cellulose suspensions: Rheology, liquid crystal ordering and colloidal phase behaviour.
    Xu Y; Atrens A; Stokes JR
    Adv Colloid Interface Sci; 2020 Jan; 275():102076. PubMed ID: 31780045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and rheology of liquid crystal hydroglass formed in aqueous nanocrystalline cellulose suspensions.
    Xu Y; Atrens A; Stokes JR
    J Colloid Interface Sci; 2019 Nov; 555():702-713. PubMed ID: 31416025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid crystal hydroglass formed via phase separation of nanocellulose colloidal rods.
    Xu Y; Atrens AD; Stokes JR
    Soft Matter; 2019 Feb; 15(8):1716-1720. PubMed ID: 30638248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Percolation and phase behavior in cellulose nanocrystal suspensions from nonlinear rheological analysis.
    Wojno S; Ahlinder A; Altskär A; Stading M; Abitbol T; Kádár R
    Carbohydr Polym; 2023 May; 308():120622. PubMed ID: 36813332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulose Nanocrystal Aqueous Colloidal Suspensions: Evidence of Density Inversion at the Isotropic-Liquid Crystal Phase Transition.
    da Rosa RR; Silva PES; Saraiva DV; Kumar A; de Sousa APM; Sebastião P; Fernandes SN; Godinho MH
    Adv Mater; 2022 Jul; 34(28):e2108227. PubMed ID: 35502142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Order and gelation of cellulose nanocrystal suspensions: an overview of some issues.
    Gray DG
    Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2112):. PubMed ID: 29277736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chiral Nematic Liquid Crystal Behavior of Core-Shell Hybrid Rods Consisting of Chiral Cellulose Nanocrystals Dressed with Non-chiral Conformal Polymeric Skins.
    Dong Z; Ye Z; Zhang Z; Xia K; Zhang P
    Biomacromolecules; 2020 Jun; 21(6):2376-2390. PubMed ID: 32364722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "Liquid, gel and soft glass" phase transitions and rheology of nanocrystalline cellulose suspensions as a function of concentration and salinity.
    Xu Y; Atrens AD; Stokes JR
    Soft Matter; 2018 Mar; 14(10):1953-1963. PubMed ID: 29479584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rheology and microstructure of aqueous suspensions of nanocrystalline cellulose rods.
    Xu Y; Atrens AD; Stokes JR
    J Colloid Interface Sci; 2017 Jun; 496():130-140. PubMed ID: 28214623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shear-Induced Breakup of Cellulose Nanocrystal Aggregates.
    Xu HN; Tang YY; Ouyang XK
    Langmuir; 2017 Jan; 33(1):235-242. PubMed ID: 27936767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly of cellulose nanocrystals of different lengths.
    Raghuwanshi VS; Browne C; Batchelor W; Garnier G
    J Colloid Interface Sci; 2023 Jan; 630(Pt B):249-259. PubMed ID: 36327727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulating the chiral nanoarchitecture of cellulose nanocrystals through interaction with salts and polymer.
    Lin M; Singh Raghuwanshi V; Browne C; Simon GP; Garnier G
    J Colloid Interface Sci; 2022 May; 613():207-217. PubMed ID: 35033766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small-Angle Neutron Scattering Reveals the Structural Details of Thermosensitive Polymer-Grafted Cellulose Nanocrystal Suspensions.
    Azzam F; Frka-Petesic B; Semeraro EF; Cousin F; Jean B
    Langmuir; 2020 Jul; 36(29):8511-8519. PubMed ID: 32610020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical-Like Gelation Dynamics in Cellulose Nanocrystal Suspensions.
    Morlet-Decarnin L; Divoux T; Manneville S
    ACS Macro Lett; 2023 Dec; 12(12):1733-1738. PubMed ID: 38064662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SANS study of mixed cholesteric cellulose nanocrystal - gold nanorod suspensions.
    Van Rie J; González-Rubio G; Kumar S; Schütz C; Kohlbrecher J; Vanroelen M; Van Gerven T; Deschaume O; Bartic C; Liz-Marzán LM; Salazar-Alvarez G; Thielemans W
    Chem Commun (Camb); 2020 Nov; 56(85):13001-13004. PubMed ID: 32996921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of charge density and ionic strength on the aggregation process of cellulose nanocrystals in aqueous suspension, as revealed by small-angle neutron scattering.
    Cherhal F; Cousin F; Capron I
    Langmuir; 2015 May; 31(20):5596-602. PubMed ID: 25918887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Ionic Surfactants on the Viscoelastic Properties of Chiral Nematic Cellulose Nanocrystal Suspensions.
    Ranjbar D; Hatzikiriakos SG
    Langmuir; 2020 Jan; 36(1):293-301. PubMed ID: 31845815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surfactant Driven Liquid to Soft Solid Transition of Cellulose Nanocrystal Suspensions.
    Kushan E; Demir C; Senses E
    Langmuir; 2020 Aug; 36(32):9551-9561. PubMed ID: 32701292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic arrest during the drying of cellulose nanocrystal films from aqueous suspensions analogous to the freezing of thermal motions.
    Chang MH; Oh-E M
    Sci Rep; 2022 Dec; 12(1):21042. PubMed ID: 36470939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.