BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38134674)

  • 1. Phase transition and gelation in cellulose nanocrystal-based aqueous suspensions studied by SANS.
    Xu Y; Gilbert EP; Sokolova A; Stokes JR
    J Colloid Interface Sci; 2024 Mar; 658():660-670. PubMed ID: 38134674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of nanocrystalline cellulose suspensions: Rheology, liquid crystal ordering and colloidal phase behaviour.
    Xu Y; Atrens A; Stokes JR
    Adv Colloid Interface Sci; 2020 Jan; 275():102076. PubMed ID: 31780045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and rheology of liquid crystal hydroglass formed in aqueous nanocrystalline cellulose suspensions.
    Xu Y; Atrens A; Stokes JR
    J Colloid Interface Sci; 2019 Nov; 555():702-713. PubMed ID: 31416025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid crystal hydroglass formed via phase separation of nanocellulose colloidal rods.
    Xu Y; Atrens AD; Stokes JR
    Soft Matter; 2019 Feb; 15(8):1716-1720. PubMed ID: 30638248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Percolation and phase behavior in cellulose nanocrystal suspensions from nonlinear rheological analysis.
    Wojno S; Ahlinder A; Altskär A; Stading M; Abitbol T; Kádár R
    Carbohydr Polym; 2023 May; 308():120622. PubMed ID: 36813332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulose Nanocrystal Aqueous Colloidal Suspensions: Evidence of Density Inversion at the Isotropic-Liquid Crystal Phase Transition.
    da Rosa RR; Silva PES; Saraiva DV; Kumar A; de Sousa APM; Sebastião P; Fernandes SN; Godinho MH
    Adv Mater; 2022 Jul; 34(28):e2108227. PubMed ID: 35502142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Order and gelation of cellulose nanocrystal suspensions: an overview of some issues.
    Gray DG
    Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2112):. PubMed ID: 29277736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chiral Nematic Liquid Crystal Behavior of Core-Shell Hybrid Rods Consisting of Chiral Cellulose Nanocrystals Dressed with Non-chiral Conformal Polymeric Skins.
    Dong Z; Ye Z; Zhang Z; Xia K; Zhang P
    Biomacromolecules; 2020 Jun; 21(6):2376-2390. PubMed ID: 32364722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "Liquid, gel and soft glass" phase transitions and rheology of nanocrystalline cellulose suspensions as a function of concentration and salinity.
    Xu Y; Atrens AD; Stokes JR
    Soft Matter; 2018 Mar; 14(10):1953-1963. PubMed ID: 29479584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rheology and microstructure of aqueous suspensions of nanocrystalline cellulose rods.
    Xu Y; Atrens AD; Stokes JR
    J Colloid Interface Sci; 2017 Jun; 496():130-140. PubMed ID: 28214623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shear-Induced Breakup of Cellulose Nanocrystal Aggregates.
    Xu HN; Tang YY; Ouyang XK
    Langmuir; 2017 Jan; 33(1):235-242. PubMed ID: 27936767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly of cellulose nanocrystals of different lengths.
    Raghuwanshi VS; Browne C; Batchelor W; Garnier G
    J Colloid Interface Sci; 2023 Jan; 630(Pt B):249-259. PubMed ID: 36327727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulating the chiral nanoarchitecture of cellulose nanocrystals through interaction with salts and polymer.
    Lin M; Singh Raghuwanshi V; Browne C; Simon GP; Garnier G
    J Colloid Interface Sci; 2022 May; 613():207-217. PubMed ID: 35033766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small-Angle Neutron Scattering Reveals the Structural Details of Thermosensitive Polymer-Grafted Cellulose Nanocrystal Suspensions.
    Azzam F; Frka-Petesic B; Semeraro EF; Cousin F; Jean B
    Langmuir; 2020 Jul; 36(29):8511-8519. PubMed ID: 32610020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical-Like Gelation Dynamics in Cellulose Nanocrystal Suspensions.
    Morlet-Decarnin L; Divoux T; Manneville S
    ACS Macro Lett; 2023 Dec; 12(12):1733-1738. PubMed ID: 38064662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SANS study of mixed cholesteric cellulose nanocrystal - gold nanorod suspensions.
    Van Rie J; González-Rubio G; Kumar S; Schütz C; Kohlbrecher J; Vanroelen M; Van Gerven T; Deschaume O; Bartic C; Liz-Marzán LM; Salazar-Alvarez G; Thielemans W
    Chem Commun (Camb); 2020 Nov; 56(85):13001-13004. PubMed ID: 32996921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of charge density and ionic strength on the aggregation process of cellulose nanocrystals in aqueous suspension, as revealed by small-angle neutron scattering.
    Cherhal F; Cousin F; Capron I
    Langmuir; 2015 May; 31(20):5596-602. PubMed ID: 25918887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Ionic Surfactants on the Viscoelastic Properties of Chiral Nematic Cellulose Nanocrystal Suspensions.
    Ranjbar D; Hatzikiriakos SG
    Langmuir; 2020 Jan; 36(1):293-301. PubMed ID: 31845815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surfactant Driven Liquid to Soft Solid Transition of Cellulose Nanocrystal Suspensions.
    Kushan E; Demir C; Senses E
    Langmuir; 2020 Aug; 36(32):9551-9561. PubMed ID: 32701292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic arrest during the drying of cellulose nanocrystal films from aqueous suspensions analogous to the freezing of thermal motions.
    Chang MH; Oh-E M
    Sci Rep; 2022 Dec; 12(1):21042. PubMed ID: 36470939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.