BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38134734)

  • 1. Expression of the two-component regulator StyS/StyR enhanced transcription of the styrene monooxygenase gene styAB and indigo biosynthesis in Escherichia coli.
    Yin S; Li Y; Hou J
    Enzyme Microb Technol; 2024 Mar; 174():110381. PubMed ID: 38134734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of styAB is regulated by a two-component system during indigo biosynthesis in Pseudomonas putida.
    Cheng L; Yue J; Yin S; Ren M; Wang C
    Biochem Biophys Res Commun; 2019 Oct; 519(1):198-203. PubMed ID: 31492500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing Indigo Production by Over-Expression of the Styrene Monooxygenase in Pseudomonas putida.
    Cheng L; Yin S; Chen M; Sun B; Hao S; Wang C
    Curr Microbiol; 2016 Aug; 73(2):248-54. PubMed ID: 27154464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of Indigo by Recombinant
    Du L; Yue J; Zhu Y; Yin S
    Foods; 2022 Jul; 11(14):. PubMed ID: 35885360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro evolution of styrene monooxygenase from Pseudomonas putida CA-3 for improved epoxide synthesis.
    Gursky LJ; Nikodinovic-Runic J; Feenstra KA; O'Connor KE
    Appl Microbiol Biotechnol; 2010 Jan; 85(4):995-1004. PubMed ID: 19568744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Combinational Optimization Method for Efficient Production of Indigo by the Recombinant
    Pan Z; Tao D; Ren M; Cheng L
    Foods; 2023 Jan; 12(3):. PubMed ID: 36766031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indigo formation by microorganisms expressing styrene monooxygenase activity.
    O'Connor KE; Dobson AD; Hartmans S
    Appl Environ Microbiol; 1997 Nov; 63(11):4287-91. PubMed ID: 9361415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical characterization of StyAB from Pseudomonas sp. strain VLB120 as a two-component flavin-diffusible monooxygenase.
    Otto K; Hofstetter K; Röthlisberger M; Witholt B; Schmid A
    J Bacteriol; 2004 Aug; 186(16):5292-302. PubMed ID: 15292130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards a biocatalyst for (S)-styrene oxide production: characterization of the styrene degradation pathway of Pseudomonas sp. strain VLB120.
    Panke S; Witholt B; Schmid A; Wubbolts MG
    Appl Environ Microbiol; 1998 Jun; 64(6):2032-43. PubMed ID: 9603811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NADH availability limits asymmetric biocatalytic epoxidation in a growing recombinant Escherichia coli strain.
    Bühler B; Park JB; Blank LM; Schmid A
    Appl Environ Microbiol; 2008 Mar; 74(5):1436-46. PubMed ID: 18192422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production host selection for asymmetric styrene epoxidation: Escherichia coli vs. solvent-tolerant Pseudomonas.
    Kuhn D; Bühler B; Schmid A
    J Ind Microbiol Biotechnol; 2012 Aug; 39(8):1125-33. PubMed ID: 22526330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo.
    Ensley BD; Ratzkin BJ; Osslund TD; Simon MJ; Wackett LP; Gibson DT
    Science; 1983 Oct; 222(4620):167-9. PubMed ID: 6353574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An indigo-producing plant, Polygonum tinctorium, possesses a flavin-containing monooxygenase capable of oxidizing indole.
    Inoue S; Morita R; Minami Y
    Biochem Biophys Res Commun; 2021 Jan; 534():199-205. PubMed ID: 33303189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indigo production by naphthalene-degrading bacteria.
    Bhushan B; Samanta SK; Jain RK
    Lett Appl Microbiol; 2000 Jul; 31(1):5-9. PubMed ID: 10886605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a flavin-containing monooxygenase from Corynebacterium glutamicum and its application to production of indigo and indirubin.
    Ameria SP; Jung HS; Kim HS; Han SS; Kim HS; Lee JH
    Biotechnol Lett; 2015 Aug; 37(8):1637-44. PubMed ID: 25851950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic and functional analysis of the styrene catabolic cluster of Pseudomonas sp. strain Y2.
    Velasco A; Alonso S; García JL; Perera J; Díaz E
    J Bacteriol; 1998 Mar; 180(5):1063-71. PubMed ID: 9495743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Styrene-catabolism regulation in Pseudomonas fluorescens ST: phosphorylation of StyR induces dimerization and cooperative DNA-binding.
    Leoni L; Ascenzi P; Bocedi A; Rampioni G; Castellini L; Zennaro E
    Biochem Biophys Res Commun; 2003 Apr; 303(3):926-31. PubMed ID: 12670500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interplay of StyR and IHF regulates substrate-dependent induction and carbon catabolite repression of styrene catabolism genes in Pseudomonas fluorescens ST.
    Rampioni G; Leoni L; Pietrangeli B; Zennaro E
    BMC Microbiol; 2008 Jun; 8():92. PubMed ID: 18547423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual role of response regulator StyR in styrene catabolism regulation.
    Leoni L; Rampioni G; Di Stefano V; Zennaro E
    Appl Environ Microbiol; 2005 Sep; 71(9):5411-9. PubMed ID: 16151132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of metabolic operons catalyzing the de novo biosynthesis of indigo in Escherichia coli.
    Murdock D; Ensley BD; Serdar C; Thalen M
    Biotechnology (N Y); 1993 Mar; 11(3):381-6. PubMed ID: 7763440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.