These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 38134744)
21. Progress and trends of photodynamic therapy: From traditional photosensitizers to AIE-based photosensitizers. Wang S; Wang X; Yu L; Sun M Photodiagnosis Photodyn Ther; 2021 Jun; 34():102254. PubMed ID: 33713845 [TBL] [Abstract][Full Text] [Related]
23. Aggregation-induced emission photosensitizer-based photodynamic therapy in cancer: from chemical to clinical. Meng Z; Xue H; Wang T; Chen B; Dong X; Yang L; Dai J; Lou X; Xia F J Nanobiotechnology; 2022 Jul; 20(1):344. PubMed ID: 35883086 [TBL] [Abstract][Full Text] [Related]
24. Deciphering Oxygen-Independent Augmented Photodynamic Oncotherapy by Facilitating the Separation of Electron-Hole Pairs. Hu X; Fang Z; Sun F; Zhu C; Jia M; Miao X; Huang L; Hu W; Fan Q; Yang Z; Huang W Angew Chem Int Ed Engl; 2024 Apr; 63(15):e202401036. PubMed ID: 38362791 [TBL] [Abstract][Full Text] [Related]
25. Rational design of type-I photosensitizer molecules for mitochondrion-targeted photodynamic therapy. Liang J; Ran X; Liu Y; Yu X; Chen S; Li K J Mater Chem B; 2024 Apr; 12(15):3686-3693. PubMed ID: 38563159 [TBL] [Abstract][Full Text] [Related]
26. Design and structural regulation of AIE photosensitizers for imaging-guided photodynamic anti-tumor application. Jia S; Yuan H; Hu R Biomater Sci; 2022 Aug; 10(16):4443-4457. PubMed ID: 35789348 [TBL] [Abstract][Full Text] [Related]
27. A type I and type II chemical biology toolbox to overcome the hypoxic tumour microenvironment for photodynamic therapy. Ju M; Yang L; Wang G; Zong F; Shen Y; Wu S; Tang X; Yu D Biomater Sci; 2024 May; 12(11):2831-2840. PubMed ID: 38683541 [TBL] [Abstract][Full Text] [Related]
28. Aggregation-Induced Emission Photosensitizers: From Molecular Design to Photodynamic Therapy. Dai J; Wu X; Ding S; Lou X; Xia F; Wang S; Hong Y J Med Chem; 2020 Mar; 63(5):1996-2012. PubMed ID: 32039596 [TBL] [Abstract][Full Text] [Related]
29. A Cascade Strategy Boosting Hydroxyl Radical Generation with Aggregation-Induced Emission Photosensitizers-Albumin Complex for Photodynamic Therapy. Li Y; Zhang D; Yu Y; Zhang L; Li L; Shi L; Feng G; Tang BZ ACS Nano; 2023 Sep; 17(17):16993-17003. PubMed ID: 37606032 [TBL] [Abstract][Full Text] [Related]
30. Innovative strategies for enhanced tumor photodynamic therapy. Li G; Wang Q; Liu J; Wu M; Ji H; Qin Y; Zhou X; Wu L J Mater Chem B; 2021 Sep; 9(36):7347-7370. PubMed ID: 34382629 [TBL] [Abstract][Full Text] [Related]
31. Photosensitizers with multiple degradation modes for efficient and postoperatively safe photodynamic therapy. Li Y; Zhang P; Xie Y; Yang J; Yang Y; Shi L; Wu W; Li Z Biomaterials; 2023 Aug; 299():122182. PubMed ID: 37276795 [TBL] [Abstract][Full Text] [Related]
32. Incorporating spin-orbit coupling promoted functional group into an enhanced electron D-A system: A useful designing concept for fabricating efficient photosensitizer and imaging-guided photodynamic therapy. Yang Z; Zhang Z; Sun Y; Lei Z; Wang D; Ma H; Tang BZ Biomaterials; 2021 Aug; 275():120934. PubMed ID: 34217019 [TBL] [Abstract][Full Text] [Related]
33. Relighting Photosensitizers by Synergistic Integration of Albumin and Perfluorocarbon for Enhanced Photodynamic Therapy. Ren H; Liu J; Su F; Ge S; Yuan A; Dai W; Wu J; Hu Y ACS Appl Mater Interfaces; 2017 Feb; 9(4):3463-3473. PubMed ID: 28067039 [TBL] [Abstract][Full Text] [Related]
34. The bromoporphyrins as promising anti-tumor photosensitizers in vitro. Li MY; Mi L; Namulinda T; Yan YJ; Zhou XP; Chen ZL Photochem Photobiol Sci; 2023 Feb; 22(2):427-439. PubMed ID: 36344865 [TBL] [Abstract][Full Text] [Related]
35. Nano-photosensitizers for enhanced photodynamic therapy. Lin L; Song X; Dong X; Li B Photodiagnosis Photodyn Ther; 2021 Dec; 36():102597. PubMed ID: 34699982 [TBL] [Abstract][Full Text] [Related]
36. Chlorination-Mediated π-π Stacking Enhances the Photodynamic Properties of a NIR-II Emitting Photosensitizer with Extended Conjugation. Gu Y; Lai H; Chen ZY; Zhu Y; Sun Z; Lai X; Wang H; Wei Z; Chen L; Huang L; Zhang Y; He F; Tian L Angew Chem Int Ed Engl; 2023 Jun; 62(25):e202303476. PubMed ID: 37079447 [TBL] [Abstract][Full Text] [Related]
37. Activatable Photosensitizer for Smart Photodynamic Therapy Triggered by Reactive Oxygen Species in Tumor Cells. Yuan B; Wang H; Xu JF; Zhang X ACS Appl Mater Interfaces; 2020 Jun; 12(24):26982-26990. PubMed ID: 32432853 [TBL] [Abstract][Full Text] [Related]
38. Graphene Quantum Dots Modified Upconversion Nanoparticles for Photodynamic Therapy. Li Y; Wang Y; Shang H; Wu J Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293415 [TBL] [Abstract][Full Text] [Related]
39. Deep-red Emitting Ir(III) Complexes as Type-I Photosensitizers for Lipid Droplets Targeted Photodynamic Therapy. Tong J; Liu A; Huang S; Yao Y; Shan GG; Su ZM Chem Asian J; 2023 Jun; 18(12):e202300175. PubMed ID: 37114295 [TBL] [Abstract][Full Text] [Related]
40. Engineering nanoenzymes integrating Iron-based metal organic frameworks with Pt nanoparticles for enhanced Photodynamic-Ferroptosis therapy. Ye Y; Yu H; Chen B; Zhao Y; Lv B; Xue G; Sun Y; Cao J J Colloid Interface Sci; 2023 Sep; 645():882-894. PubMed ID: 37178565 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]