These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38134798)

  • 1. Entanglement Growth and Minimal Membranes in (d+1) Random Unitary Circuits.
    Sierant P; Schirò M; Lewenstein M; Turkeshi X
    Phys Rev Lett; 2023 Dec; 131(23):230403. PubMed ID: 38134798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting Measurement-Induced Entanglement Transitions with Unitary Mirror Circuits.
    Yanay Y; Swingle B; Tahan C
    Phys Rev Lett; 2024 Aug; 133(7):070601. PubMed ID: 39213565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topological Order and Criticality in (2+1)D Monitored Random Quantum Circuits.
    Lavasani A; Alavirad Y; Barkeshli M
    Phys Rev Lett; 2021 Dec; 127(23):235701. PubMed ID: 34936777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite-Time Teleportation Phase Transition in Random Quantum Circuits.
    Bao Y; Block M; Altman E
    Phys Rev Lett; 2024 Jan; 132(3):030401. PubMed ID: 38307063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting Entanglement in Quantum Many-Body Systems via Permutation Moments.
    Liu Z; Tang Y; Dai H; Liu P; Chen S; Ma X
    Phys Rev Lett; 2022 Dec; 129(26):260501. PubMed ID: 36608179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Unitary Designs with a System-Size Independent Number of Non-Clifford Gates.
    Haferkamp J; Montealegre-Mora F; Heinrich M; Eisert J; Gross D; Roth I
    Commun Math Phys; 2023; 397(3):995-1041. PubMed ID: 36743125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postselection-Free Entanglement Dynamics via Spacetime Duality.
    Ippoliti M; Khemani V
    Phys Rev Lett; 2021 Feb; 126(6):060501. PubMed ID: 33635716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Switching and Swapping of Quantum Information: Entropy and Entanglement Level.
    Sawerwain M; Wiśniewska J; Gielerak R
    Entropy (Basel); 2021 Jun; 23(6):. PubMed ID: 34200037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Entanglement of Three-Qubit Random Pure States.
    Enríquez M; Delgado F; Życzkowski K
    Entropy (Basel); 2018 Sep; 20(10):. PubMed ID: 33265834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Out-of-equilibrium quantum magnetism and thermalization in a spin-3 many-body dipolar lattice system.
    Lepoutre S; Schachenmayer J; Gabardos L; Zhu B; Naylor B; Maréchal E; Gorceix O; Rey AM; Vernac L; Laburthe-Tolra B
    Nat Commun; 2019 Apr; 10(1):1714. PubMed ID: 30979894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum Information Spreading in Generalized Dual-Unitary Circuits.
    Foligno A; Kos P; Bertini B
    Phys Rev Lett; 2024 Jun; 132(25):250402. PubMed ID: 38996275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum Many-Body Scars in Dual-Unitary Circuits.
    Logarić L; Dooley S; Pappalardi S; Goold J
    Phys Rev Lett; 2024 Jan; 132(1):010401. PubMed ID: 38242646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Bipartite Entanglement Detection Scheme with a Quantum Adversarial Solver.
    Yin XF; Du Y; Fei YY; Zhang R; Liu LZ; Mao Y; Liu T; Hsieh MH; Li L; Liu NL; Tao D; Chen YA; Pan JW
    Phys Rev Lett; 2022 Mar; 128(11):110501. PubMed ID: 35363009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and measurement of three-qubit entanglement in a superconducting circuit.
    Dicarlo L; Reed MD; Sun L; Johnson BR; Chow JM; Gambetta JM; Frunzio L; Girvin SM; Devoret MH; Schoelkopf RJ
    Nature; 2010 Sep; 467(7315):574-8. PubMed ID: 20882013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymptotically optimal approximation of single qubit unitaries by Clifford and T circuits using a constant number of ancillary qubits.
    Kliuchnikov V; Maslov D; Mosca M
    Phys Rev Lett; 2013 May; 110(19):190502. PubMed ID: 23705696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wave-Particle-Entanglement-Ignorance Complementarity for General Bipartite Systems.
    Wu W; Wang J
    Entropy (Basel); 2020 Jul; 22(8):. PubMed ID: 33286583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of genuine entanglement up to 51 superconducting qubits.
    Cao S; Wu B; Chen F; Gong M; Wu Y; Ye Y; Zha C; Qian H; Ying C; Guo S; Zhu Q; Huang HL; Zhao Y; Li S; Wang S; Yu J; Fan D; Wu D; Su H; Deng H; Rong H; Li Y; Zhang K; Chung TH; Liang F; Lin J; Xu Y; Sun L; Guo C; Li N; Huo YH; Peng CZ; Lu CY; Yuan X; Zhu X; Pan JW
    Nature; 2023 Jul; 619(7971):738-742. PubMed ID: 37438533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Copies Estimation of Entanglement Negativity.
    Zhou Y; Zeng P; Liu Z
    Phys Rev Lett; 2020 Nov; 125(20):200502. PubMed ID: 33258639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum Error Correction in Scrambling Dynamics and Measurement-Induced Phase Transition.
    Choi S; Bao Y; Qi XL; Altman E
    Phys Rev Lett; 2020 Jul; 125(3):030505. PubMed ID: 32745425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of entanglement measures and LOCC maximized quantum Fisher information of general two qubit systems.
    Erol V; Ozaydin F; Altintas AA
    Sci Rep; 2014 Jun; 4():5422. PubMed ID: 24957694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.