BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 38134886)

  • 1. High-throughput PRIME-editing screens identify functional DNA variants in the human genome.
    Ren X; Yang H; Nierenberg JL; Sun Y; Chen J; Beaman C; Pham T; Nobuhara M; Takagi MA; Narayan V; Li Y; Ziv E; Shen Y
    Mol Cell; 2023 Dec; 83(24):4633-4645.e9. PubMed ID: 38134886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High throughput PRIME editing screens identify functional DNA variants in the human genome.
    Ren X; Yang H; Nierenberg JL; Sun Y; Chen J; Beaman C; Pham T; Nobuhara M; Takagi MA; Narayan V; Li Y; Ziv E; Shen Y
    bioRxiv; 2023 Jul; ():. PubMed ID: 37502948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome.
    Klann TS; Black JB; Chellappan M; Safi A; Song L; Hilton IB; Crawford GE; Reddy TE; Gersbach CA
    Nat Biotechnol; 2017 Jun; 35(6):561-568. PubMed ID: 28369033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Review on Advanced CRISPR-Based Genome-Editing Tools: Base Editing and Prime Editing.
    Saber Sichani A; Ranjbar M; Baneshi M; Torabi Zadeh F; Fallahi J
    Mol Biotechnol; 2023 Jun; 65(6):849-860. PubMed ID: 36547823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SliceIt: A genome-wide resource and visualization tool to design CRISPR/Cas9 screens for editing protein-RNA interaction sites in the human genome.
    Vemuri S; Srivastava R; Mir Q; Hashemikhabir S; Dong XC; Janga SC
    Methods; 2020 Jun; 178():104-113. PubMed ID: 31494246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Genetic Variants Revealed by Massively Parallel Precise Genome Editing.
    Sharon E; Chen SA; Khosla NM; Smith JD; Pritchard JK; Fraser HB
    Cell; 2018 Oct; 175(2):544-557.e16. PubMed ID: 30245013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Base editing sensor libraries for high-throughput engineering and functional analysis of cancer-associated single nucleotide variants.
    Sánchez-Rivera FJ; Diaz BJ; Kastenhuber ER; Schmidt H; Katti A; Kennedy M; Tem V; Ho YJ; Leibold J; Paffenholz SV; Barriga FM; Chu K; Goswami S; Wuest AN; Simon JM; Tsanov KM; Chakravarty D; Zhang H; Leslie CS; Lowe SW; Dow LE
    Nat Biotechnol; 2022 Jun; 40(6):862-873. PubMed ID: 35165384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of pathogenic variants in cancer genes using base editing screens with editing efficiency correction.
    Huang C; Li G; Wu J; Liang J; Wang X
    Genome Biol; 2021 Mar; 22(1):80. PubMed ID: 33691754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome scale analysis of pathogenic variants targetable for single base editing.
    Lavrov AV; Varenikov GG; Skoblov MY
    BMC Med Genomics; 2020 Sep; 13(Suppl 8):80. PubMed ID: 32948190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tag-seq: a convenient and scalable method for genome-wide specificity assessment of CRISPR/Cas nucleases.
    Huang H; Hu Y; Huang G; Ma S; Feng J; Wang D; Lin Y; Zhou J; Rong Z
    Commun Biol; 2021 Jul; 4(1):830. PubMed ID: 34215845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prime Editing in Mammals: The Next Generation of Precision Genome Editing.
    Wang D; Fan X; Li M; Liu T; Lu P; Wang G; Li Y; Han J; Zhao J
    CRISPR J; 2022 Dec; 5(6):746-768. PubMed ID: 36512351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unbiased investigation of specificities of prime editing systems in human cells.
    Kim DY; Moon SB; Ko JH; Kim YS; Kim D
    Nucleic Acids Res; 2020 Oct; 48(18):10576-10589. PubMed ID: 32941652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prime Editing Guide RNA Design Automation Using PINE-CONE.
    Standage-Beier K; Tekel SJ; Brafman DA; Wang X
    ACS Synth Biol; 2021 Feb; 10(2):422-427. PubMed ID: 33464043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-scale CRISPR pooled screens.
    Sanjana NE
    Anal Biochem; 2017 Sep; 532():95-99. PubMed ID: 27261176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes.
    Chen PJ; Hussmann JA; Yan J; Knipping F; Ravisankar P; Chen PF; Chen C; Nelson JW; Newby GA; Sahin M; Osborn MJ; Weissman JS; Adamson B; Liu DR
    Cell; 2021 Oct; 184(22):5635-5652.e29. PubMed ID: 34653350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Doxycycline-Dependent Self-Inactivation of CRISPR-Cas9 to Temporally Regulate On- and Off-Target Editing.
    Kelkar A; Zhu Y; Groth T; Stolfa G; Stablewski AB; Singhi N; Nemeth M; Neelamegham S
    Mol Ther; 2020 Jan; 28(1):29-41. PubMed ID: 31601489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing the Targeting Scope of CRISPR Base Editing System Beyond NGG.
    Yu SY; Birkenshaw A; Thomson T; Carlaw T; Zhang LH; Ross CJD
    CRISPR J; 2022 Apr; 5(2):187-202. PubMed ID: 35238621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging applications of genome-editing technology to examine functionality of GWAS-associated variants for complex traits.
    Smith AJP; Deloukas P; Munroe PB
    Physiol Genomics; 2018 Jul; 50(7):510-522. PubMed ID: 29652634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive analysis of prime editing outcomes in human embryonic stem cells.
    Habib O; Habib G; Hwang GH; Bae S
    Nucleic Acids Res; 2022 Jan; 50(2):1187-1197. PubMed ID: 35018468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Cas9 DNA Base-Editing and Prime-Editing.
    Kantor A; McClements ME; MacLaren RE
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32872311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.