BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 38134886)

  • 21. Increasing the Targeting Scope of CRISPR Base Editing System Beyond NGG.
    Yu SY; Birkenshaw A; Thomson T; Carlaw T; Zhang LH; Ross CJD
    CRISPR J; 2022 Apr; 5(2):187-202. PubMed ID: 35238621
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional interrogation of DNA damage response variants with base editing screens.
    Cuella-Martin R; Hayward SB; Fan X; Chen X; Huang JW; Taglialatela A; Leuzzi G; Zhao J; Rabadan R; Lu C; Shen Y; Ciccia A
    Cell; 2021 Feb; 184(4):1081-1097.e19. PubMed ID: 33606978
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Emerging applications of genome-editing technology to examine functionality of GWAS-associated variants for complex traits.
    Smith AJP; Deloukas P; Munroe PB
    Physiol Genomics; 2018 Jul; 50(7):510-522. PubMed ID: 29652634
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comprehensive analysis of prime editing outcomes in human embryonic stem cells.
    Habib O; Habib G; Hwang GH; Bae S
    Nucleic Acids Res; 2022 Jan; 50(2):1187-1197. PubMed ID: 35018468
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR-Cas9 DNA Base-Editing and Prime-Editing.
    Kantor A; McClements ME; MacLaren RE
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32872311
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Editing GWAS: experimental approaches to dissect and exploit disease-associated genetic variation.
    Rao S; Yao Y; Bauer DE
    Genome Med; 2021 Mar; 13(1):41. PubMed ID: 33691767
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Perturbing proteomes at single residue resolution using base editing.
    Després PC; Dubé AK; Seki M; Yachie N; Landry CR
    Nat Commun; 2020 Apr; 11(1):1871. PubMed ID: 32313011
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-Throughput Approaches to Pinpoint Function within the Noncoding Genome.
    Montalbano A; Canver MC; Sanjana NE
    Mol Cell; 2017 Oct; 68(1):44-59. PubMed ID: 28985510
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of efficiencies for diverse prime editing systems in multiple cell types.
    Yu G; Kim HK; Park J; Kwak H; Cheong Y; Kim D; Kim J; Kim J; Kim HH
    Cell; 2023 May; 186(10):2256-2272.e23. PubMed ID: 37119812
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Generation of a more efficient prime editor 2 by addition of the Rad51 DNA-binding domain.
    Song M; Lim JM; Min S; Oh JS; Kim DY; Woo JS; Nishimasu H; Cho SR; Yoon S; Kim HH
    Nat Commun; 2021 Sep; 12(1):5617. PubMed ID: 34556671
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improvement of base editors and prime editors advances precision genome engineering in plants.
    Hua K; Han P; Zhu JK
    Plant Physiol; 2022 Mar; 188(4):1795-1810. PubMed ID: 34962995
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new era in functional genomics screens.
    Przybyla L; Gilbert LA
    Nat Rev Genet; 2022 Feb; 23(2):89-103. PubMed ID: 34545248
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Methods for Scarless, Selection-Free Generation of Human Cells and Allele-Specific Functional Analysis of Disease-Associated SNPs and Variants of Uncertain Significance.
    Coggins NB; Stultz J; O'Geen H; Carvajal-Carmona LG; Segal DJ
    Sci Rep; 2017 Nov; 7(1):15044. PubMed ID: 29118424
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interpreting non-coding disease-associated human variants using single-cell epigenomics.
    Gaulton KJ; Preissl S; Ren B
    Nat Rev Genet; 2023 Aug; 24(8):516-534. PubMed ID: 37161089
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Base Editing and Prime Editing: Potential Therapeutic Options for Rare and Common Diseases.
    Testa LC; Musunuru K
    BioDrugs; 2023 Jul; 37(4):453-462. PubMed ID: 37314680
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome-wide profiling of prime editor off-target sites in vitro and in vivo using PE-tag.
    Liang SQ; Liu P; Ponnienselvan K; Suresh S; Chen Z; Kramme C; Chatterjee P; Zhu LJ; Sontheimer EJ; Xue W; Wolfe SA
    Nat Methods; 2023 Jun; 20(6):898-907. PubMed ID: 37156841
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluating CRISPR-based prime editing for cancer modeling and CFTR repair in organoids.
    Geurts MH; de Poel E; Pleguezuelos-Manzano C; Oka R; Carrillo L; Andersson-Rolf A; Boretto M; Brunsveld JE; van Boxtel R; Beekman JM; Clevers H
    Life Sci Alliance; 2021 Oct; 4(10):. PubMed ID: 34373320
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Validation of prostate cancer risk variants rs10993994 and rs7098889 by CRISPR/Cas9 mediated genome editing.
    Wang X; Hayes JE; Xu X; Gao X; Mehta D; Lilja HG; Klein RJ
    Gene; 2021 Feb; 768():145265. PubMed ID: 33122083
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prime editing in plants and mammalian cells: Mechanism, achievements, limitations, and future prospects.
    Hillary VE; Ceasar SA
    Bioessays; 2022 Sep; 44(9):e2200032. PubMed ID: 35750651
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-Throughput Gene Mutagenesis Screening Using Base Editing.
    Després PC; Dubé AK; Yachie N; Landry CR
    Methods Mol Biol; 2022; 2477():331-348. PubMed ID: 35524126
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.