These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 38135008)

  • 1. Triaging between post-translational modification of cell cycle regulators and their therapeutics in neurodegenerative diseases.
    Rani N; Sahu M; Ambasta RK; Kumar P
    Ageing Res Rev; 2024 Feb; 94():102174. PubMed ID: 38135008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Post-translational modifications: Regulators of neurodegenerative proteinopathies.
    Gupta R; Sahu M; Srivastava D; Tiwari S; Ambasta RK; Kumar P
    Ageing Res Rev; 2021 Jul; 68():101336. PubMed ID: 33775891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulatory mechanism of cyclins and cyclin-dependent kinases in post-mitotic neuronal cell division.
    Gupta R; Jha A; Ambasta RK; Kumar P
    Life Sci; 2021 Nov; 285():120006. PubMed ID: 34606852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current Technologies Unraveling the Significance of Post-Translational Modifications (PTMs) as Crucial Players in Neurodegeneration.
    Zafar S; Fatima SI; Schmitz M; Zerr I
    Biomolecules; 2024 Jan; 14(1):. PubMed ID: 38254718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of SUMOylation in Neurodegenerative Diseases.
    Mandel N; Agarwal N
    Cells; 2022 Oct; 11(21):. PubMed ID: 36359791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Molecular mechanisms controlling the cell cycle: fundamental aspects and implications for oncology].
    Viallard JF; Lacombe F; Belloc F; Pellegrin JL; Reiffers J
    Cancer Radiother; 2001 Apr; 5(2):109-29. PubMed ID: 11355576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deciphering the Role of Aberrant Protein Post-Translational Modification in the Pathology of Neurodegeneration.
    Shafi S; Singh A; Gupta P; Chawla PA; Fayaz F; Sharma A; Pottoo FH
    CNS Neurol Disord Drug Targets; 2021; 20(1):54-67. PubMed ID: 32885763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell cycle deregulation in neurodegenerative diseases.
    Zhang X; Song S; Peng W
    Int J Neurosci; 2023 Apr; 133(4):408-416. PubMed ID: 33945388
    [No Abstract]   [Full Text] [Related]  

  • 9. Role of protein kinases in neurodegenerative disease: cyclin-dependent kinases in Alzheimer's disease.
    Monaco EA; Vallano ML
    Front Biosci; 2005 Jan; 10():143-59. PubMed ID: 15574357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacological relevance of CDK inhibitors in Alzheimer's disease.
    Malhotra N; Gupta R; Kumar P
    Neurochem Int; 2021 Sep; 148():105115. PubMed ID: 34182065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Do Post-Translational Modifications Influence Protein Aggregation in Neurodegenerative Diseases: A Systematic Review.
    Schaffert LN; Carter WG
    Brain Sci; 2020 Apr; 10(4):. PubMed ID: 32290481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Analysis Indicates That PARP1 Acts as a Histone Deacetylases Interactor Sharing Common Lysine Residues for Acetylation, Ubiquitination, and SUMOylation in Alzheimer's and Parkinson's Disease.
    Gupta R; Kumar P
    ACS Omega; 2021 Mar; 6(8):5739-5753. PubMed ID: 33681613
    [No Abstract]   [Full Text] [Related]  

  • 13. Evaluation of post-translational modifications in histone proteins: A review on histone modification defects in developmental and neurological disorders.
    Ramazi S; Allahverdi A; Zahiri J
    J Biosci; 2020; 45():. PubMed ID: 33184251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel potent pharmacological cyclin-dependent kinase inhibitors.
    Węsierska-Gądek J; Chamrád I; Kryštof V
    Future Med Chem; 2009 Dec; 1(9):1561-81. PubMed ID: 21425979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Guiding Mitotic Progression by Crosstalk between Post-translational Modifications.
    Cuijpers SAG; Vertegaal ACO
    Trends Biochem Sci; 2018 Apr; 43(4):251-268. PubMed ID: 29486978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current concepts in neuro-oncology: the cell cycle--a review.
    Dirks PB; Rutka JT
    Neurosurgery; 1997 May; 40(5):1000-13; discussion 1013-5. PubMed ID: 9149259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interplay between the p53 tumor suppressor protein family and Cdk5: novel therapeutic approaches for the treatment of neurodegenerative diseases using selective Cdk inhibitors.
    Schmid G; Strosznajder JB; Wesierska-Gadek J
    Mol Neurobiol; 2006 Aug; 34(1):27-50. PubMed ID: 17003520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of cyclin-Cdk activity in mammalian cells.
    Obaya AJ; Sedivy JM
    Cell Mol Life Sci; 2002 Jan; 59(1):126-42. PubMed ID: 11846025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Butyrate, an HDAC inhibitor, stimulates interplay between different posttranslational modifications of histone H3 and differently alters G1-specific cell cycle proteins in vascular smooth muscle cells.
    Mathew OP; Ranganna K; Yatsu FM
    Biomed Pharmacother; 2010 Dec; 64(10):733-40. PubMed ID: 20970954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclin-dependent kinase 5 (CDK5) and neuronal cell death.
    Weishaupt JH; Neusch C; Bähr M
    Cell Tissue Res; 2003 Apr; 312(1):1-8. PubMed ID: 12684868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.