These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38135439)

  • 1. Multi-CGAN: Deep Generative Model-Based Multiproperty Antimicrobial Peptide Design.
    Yu H; Wang R; Qiao J; Wei L
    J Chem Inf Model; 2024 Jan; 64(1):316-326. PubMed ID: 38135439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An adversarial machine learning framework and biomechanical model-guided approach for computing 3D lung tissue elasticity from end-expiration 3DCT.
    Santhanam AP; Stiehl B; Lauria M; Hasse K; Barjaktarevic I; Goldin J; Low DA
    Med Phys; 2021 Feb; 48(2):667-675. PubMed ID: 32449519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein Language Models and Machine Learning Facilitate the Identification of Antimicrobial Peptides.
    Medina-Ortiz D; Contreras S; Fernández D; Soto-García N; Moya I; Cabas-Mora G; Olivera-Nappa Á
    Int J Mol Sci; 2024 Aug; 25(16):. PubMed ID: 39201537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feedback-AVPGAN: Feedback-guided generative adversarial network for generating antiviral peptides.
    Hasegawa K; Moriwaki Y; Terada T; Wei C; Shimizu K
    J Bioinform Comput Biol; 2022 Dec; 20(6):2250026. PubMed ID: 36514872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide-based drug discovery through artificial intelligence: towards an autonomous design of therapeutic peptides.
    Goles M; Daza A; Cabas-Mora G; Sarmiento-Varón L; Sepúlveda-Yañez J; Anvari-Kazemabad H; Davari MD; Uribe-Paredes R; Olivera-Nappa Á; Navarrete MA; Medina-Ortiz D
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38856172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review and perspective on bioinformatics tools using machine learning and deep learning for predicting antiviral peptides.
    Lefin N; Herrera-Belén L; Farias JG; Beltrán JF
    Mol Divers; 2024 Aug; 28(4):2365-2374. PubMed ID: 37626205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AMP-BERT: Prediction of antimicrobial peptide function based on a BERT model.
    Lee H; Lee S; Lee I; Nam H
    Protein Sci; 2023 Jan; 32(1):e4529. PubMed ID: 36461699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AMPDeep: hemolytic activity prediction of antimicrobial peptides using transfer learning.
    Salem M; Keshavarzi Arshadi A; Yuan JS
    BMC Bioinformatics; 2022 Sep; 23(1):389. PubMed ID: 36163001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning Accelerates De Novo Design of Antimicrobial Peptides.
    Yin K; Xu W; Ren S; Xu Q; Zhang S; Zhang R; Jiang M; Zhang Y; Xu D; Li R
    Interdiscip Sci; 2024 Jun; 16(2):392-403. PubMed ID: 38416364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AMAP: Hierarchical multi-label prediction of biologically active and antimicrobial peptides.
    Gull S; Shamim N; Minhas F
    Comput Biol Med; 2019 Apr; 107():172-181. PubMed ID: 30831306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerating the Discovery and Design of Antimicrobial Peptides with Artificial Intelligence.
    Aguilera-Puga MDC; Cancelarich NL; Marani MM; de la Fuente-Nunez C; Plisson F
    Methods Mol Biol; 2024; 2714():329-352. PubMed ID: 37676607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A deep learning method for predicting the minimum inhibitory concentration of antimicrobial peptides against
    Yan J; Zhang B; Zhou M; Campbell-Valois FX; Siu SWI
    mSystems; 2023 Aug; 8(4):e0034523. PubMed ID: 37431995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recurrent Neural Network Model for Constructive Peptide Design.
    Müller AT; Hiss JA; Schneider G
    J Chem Inf Model; 2018 Feb; 58(2):472-479. PubMed ID: 29355319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictions on multi-class terminal ballistics datasets using conditional Generative Adversarial Networks.
    Thompson S; Teixeira-Dias F; Paulino M; Hamilton A
    Neural Netw; 2022 Oct; 154():425-440. PubMed ID: 35952540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Antifungal Activity of Antimicrobial Peptides by Transfer Learning from Protein Pretrained Models.
    Lobo F; González MS; Boto A; Pérez de la Lastra JM
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning Prediction of Antimicrobial Peptides.
    Wang G; Vaisman II; van Hoek ML
    Methods Mol Biol; 2022; 2405():1-37. PubMed ID: 35298806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Progress in the Discovery and Design of Antimicrobial Peptides Using Traditional Machine Learning and Deep Learning.
    Yan J; Cai J; Zhang B; Wang Y; Wong DF; Siu SWI
    Antibiotics (Basel); 2022 Oct; 11(10):. PubMed ID: 36290108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Learning-Based Bioactive Therapeutic Peptide Generation and Screening.
    Zhang H; Saravanan KM; Wei Y; Jiao Y; Yang Y; Pan Y; Wu X; Zhang JZH
    J Chem Inf Model; 2023 Feb; 63(3):835-845. PubMed ID: 36724090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovering highly potent antimicrobial peptides with deep generative model HydrAMP.
    Szymczak P; Możejko M; Grzegorzek T; Jurczak R; Bauer M; Neubauer D; Sikora K; Michalski M; Sroka J; Setny P; Kamysz W; Szczurek E
    Nat Commun; 2023 Mar; 14(1):1453. PubMed ID: 36922490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benchmarks in antimicrobial peptide prediction are biased due to the selection of negative data.
    Sidorczuk K; Gagat P; Pietluch F; Kała J; Rafacz D; Bąkała L; Słowik J; Kolenda R; Rödiger S; Fingerhut LCHW; Cooke IR; Mackiewicz P; Burdukiewicz M
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35988923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.