BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38135638)

  • 61. De novo Synthesis of 2-phenylethanol from Glucose by Metabolically Engineered Escherichia coli.
    Wang G; Wang M; Yang J; Li Q; Zhu N; Liu L; Hu X; Yang X
    J Ind Microbiol Biotechnol; 2023 Feb; 49(6):. PubMed ID: 36370454
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Production of p-amino-L-phenylalanine (L-PAPA) from glycerol by metabolic grafting of Escherichia coli.
    Mohammadi Nargesi B; Trachtmann N; Sprenger GA; Youn JW
    Microb Cell Fact; 2018 Sep; 17(1):149. PubMed ID: 30241531
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Bacterial synthesis of N-hydroxycinnamoyl phenethylamines and tyramines.
    Sim GY; Yang SM; Kim BG; Ahn JH
    Microb Cell Fact; 2015 Oct; 14():162. PubMed ID: 26463041
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Complete Pathway Elucidation and Heterologous Reconstitution of Rhodiola Salidroside Biosynthesis.
    Torrens-Spence MP; Pluskal T; Li FS; Carballo V; Weng JK
    Mol Plant; 2018 Jan; 11(1):205-217. PubMed ID: 29277428
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Pathway Engineering for Phenethylamine Production in
    Xu D; Zhang L
    J Agric Food Chem; 2020 May; 68(21):5917-5926. PubMed ID: 32367713
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Metabolic engineering of Escherichia coli for the production of phenol from glucose.
    Kim B; Park H; Na D; Lee SY
    Biotechnol J; 2014 May; 9(5):621-9. PubMed ID: 24115680
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Efficient production of hydroxytyrosol by directed evolution of HpaB in Escherichia coli.
    Qi L; Liu C; Peplowski L; Shen W; Yang H; Xia Y; Chen X
    Biochem Biophys Res Commun; 2023 Jun; 663():16-24. PubMed ID: 37116393
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Production of tyrosine from sucrose or glucose achieved by rapid genetic changes to phenylalanine-producing Escherichia coli strains.
    Olson MM; Templeton LJ; Suh W; Youderian P; Sariaslani FS; Gatenby AA; Van Dyk TK
    Appl Microbiol Biotechnol; 2007 Apr; 74(5):1031-40. PubMed ID: 17216463
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The tyrosine decarboxylation test does not differentiate Enterococcus faecalis from Enterococcus faecium.
    Marcobal A; de las Rivas B; García-Moruno E; Muñoz R
    Syst Appl Microbiol; 2004 Aug; 27(4):423-6. PubMed ID: 15368847
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Caffeic acid production enhancement by engineering a phenylalanine over-producing Escherichia coli strain.
    Huang Q; Lin Y; Yan Y
    Biotechnol Bioeng; 2013 Dec; 110(12):3188-96. PubMed ID: 23801069
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Expression of Lactobacillus brevis IOEB 9809 tyrosine decarboxylase and agmatine deiminase genes in wine correlates with substrate availability.
    Arena MP; Romano A; Capozzi V; Beneduce L; Ghariani M; Grieco F; Lucas P; Spano G
    Lett Appl Microbiol; 2011 Oct; 53(4):395-402. PubMed ID: 21740449
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex.
    Lin Y; Yan Y
    Microb Cell Fact; 2012 Apr; 11():42. PubMed ID: 22475509
    [TBL] [Abstract][Full Text] [Related]  

  • 73. [Metabolic engineering study on biosynthesis of 4-hydroxybenzyl alcohol from L-tyrosine in Escherichia coli].
    Xu DH; Bao XQ; Wu XW; Xing Y; Tan CY
    Zhongguo Zhong Yao Za Zhi; 2022 Feb; 47(4):906-912. PubMed ID: 35285189
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Tyrosine decarboxylase from Lactobacillus brevis: soluble expression and characterization.
    Zhang K; Ni Y
    Protein Expr Purif; 2014 Feb; 94():33-9. PubMed ID: 24211777
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Metabolic disposition and biological significance of simple phenols of dietary origin: hydroxytyrosol and tyrosol.
    Rodríguez-Morató J; Boronat A; Kotronoulas A; Pujadas M; Pastor A; Olesti E; Pérez-Mañá C; Khymenets O; Fitó M; Farré M; de la Torre R
    Drug Metab Rev; 2016 May; 48(2):218-36. PubMed ID: 27186796
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Heterologous expression and characterization of tyrosine decarboxylase from Enterococcus faecalis R612Z1 and Enterococcus faecium R615Z1.
    Liu F; Xu W; Du L; Wang D; Zhu Y; Geng Z; Zhang M; Xu W
    J Food Prot; 2014 Apr; 77(4):592-8. PubMed ID: 24680070
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Biochemical evaluation of a parsley tyrosine decarboxylase results in a novel 4-hydroxyphenylacetaldehyde synthase enzyme.
    Torrens-Spence MP; Gillaspy G; Zhao B; Harich K; White RH; Li J
    Biochem Biophys Res Commun; 2012 Feb; 418(2):211-6. PubMed ID: 22266321
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine.
    Qian ZG; Xia XX; Lee SY
    Biotechnol Bioeng; 2009 Nov; 104(4):651-62. PubMed ID: 19714672
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A new process for obtaining hydroxytyrosol using transformed Escherichia coli whole cells with phenol hydroxylase gene from Geobacillus thermoglucosidasius.
    Orenes-Piñero E; García-Carmona F; Sánchez-Ferrer A
    Food Chem; 2013 Aug; 139(1-4):377-83. PubMed ID: 23561120
    [TBL] [Abstract][Full Text] [Related]  

  • 80. [Improving β-carotene production in Escherichia coli by metabolic engineering of glycerol utilization pathway].
    Dong Y; Hu K; Li X; Li Q; Zhang X
    Sheng Wu Gong Cheng Xue Bao; 2017 Feb; 33(2):247-260. PubMed ID: 28956381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.