These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 38135816)
1. Assessment of Ki-67 expression levels in IDH-wildtype glioblastoma using logistic regression modelling of VASARI features. Bai L; Jiang J; Zhou J Neurosurg Rev; 2023 Dec; 47(1):20. PubMed ID: 38135816 [TBL] [Abstract][Full Text] [Related]
2. Vasari-Based Features Nomogram to Predict the Tumor-Infiltrating CD8+ T Cell Levels in Glioblastoma. Xue C; Zhou Q; Zhang B; Ke X; Zhang P; Liu X; Li S; Deng J; Zhou J Acad Radiol; 2024 May; 31(5):2050-2060. PubMed ID: 37985291 [TBL] [Abstract][Full Text] [Related]
3. Beyond invasive biopsies: using VASARI MRI features to predict grade and molecular parameters in gliomas. Setyawan NH; Choridah L; Nugroho HA; Malueka RG; Dwianingsih EK Cancer Imaging; 2024 Jan; 24(1):3. PubMed ID: 38167551 [TBL] [Abstract][Full Text] [Related]
6. Nomogram incorporating preoperative MRI-VASARI features for differentiating intracranial extraventricular ependymoma from glioblastoma. Yao Y; Fu Y; Zhou G; Wang X; Li L; Mao Y; Wang J; Tan Z; Jiang M; Yi X; Chen BT Quant Imaging Med Surg; 2024 Mar; 14(3):2255-2266. PubMed ID: 38545063 [TBL] [Abstract][Full Text] [Related]
7. Machine learning-based radiomic, clinical and semantic feature analysis for predicting overall survival and MGMT promoter methylation status in patients with glioblastoma. Lu Y; Patel M; Natarajan K; Ughratdar I; Sanghera P; Jena R; Watts C; Sawlani V Magn Reson Imaging; 2020 Dec; 74():161-170. PubMed ID: 32980505 [TBL] [Abstract][Full Text] [Related]
8. Ten Years of VASARI Glioma Features: Systematic Review and Meta-Analysis of Their Impact and Performance. Azizova A; Prysiazhniuk Y; Wamelink IJHG; Petr J; Barkhof F; Keil VC AJNR Am J Neuroradiol; 2024 Aug; 45(8):1053-1062. PubMed ID: 38937115 [TBL] [Abstract][Full Text] [Related]
9. Modelling MR and clinical features in grade II/III astrocytomas to predict IDH mutation status. Hyare H; Rice L; Thust S; Nachev P; Jha A; Milic M; Brandner S; Rees J Eur J Radiol; 2019 May; 114():120-127. PubMed ID: 31005161 [TBL] [Abstract][Full Text] [Related]
10. MRI Features May Predict Molecular Features of Glioblastoma in Park CJ; Han K; Kim H; Ahn SS; Choi D; Park YW; Chang JH; Kim SH; Cha S; Lee SK AJNR Am J Neuroradiol; 2021 Mar; 42(3):448-456. PubMed ID: 33509914 [TBL] [Abstract][Full Text] [Related]
11. Potential Utility of Visually AcceSAble Rembrandt Images Assessment in Brain Astrocytoma Grading. Yu J; Wang M; Song J; Huang D; Hong X J Comput Assist Tomogr; 2016; 40(2):301-6. PubMed ID: 26978002 [TBL] [Abstract][Full Text] [Related]
12. Association between dichotomized VASARI feature and overall survival in glioblastoma patients: a single-institution propensity score matching analysis. Han Y; Wang YY; Yang Y; Qiao SQ; Liu ZC; Cui GB; Yan LF Cancer Imaging; 2024 Aug; 24(1):109. PubMed ID: 39155364 [TBL] [Abstract][Full Text] [Related]
13. Perfusion Parameter Obtained on 3-Tesla Magnetic Resonance Imaging and the Ki-67 Labeling Index Predict the Overall Survival of Glioblastoma. Fudaba H; Momii Y; Matsuta H; Onishi K; Kawasaki Y; Sugita K; Shimomura T; Fujiki M World Neurosurg; 2021 May; 149():e469-e480. PubMed ID: 33567368 [TBL] [Abstract][Full Text] [Related]
14. Clinically Available and Reproducible Prediction Models for IDH and CDKN2A/B Gene Status in Adult-type Diffuse Gliomas. Zhu M; Han F; Gao J; Yang J; Yin L; Du Z; Zhang J Acad Radiol; 2024 Dec; 31(12):5164-5174. PubMed ID: 38944632 [TBL] [Abstract][Full Text] [Related]
15. Vasari Scoring System in Discerning between Different Degrees of Glioma and IDH Status Prediction: A Possible Machine Learning Application? Gemini L; Tortora M; Giordano P; Prudente ME; Villa A; Vargas O; Giugliano MF; Somma F; Marchello G; Chiaramonte C; Gaetano M; Frio F; Di Giorgio E; D'Avino A; Tortora F; D'Agostino V; Negro A J Imaging; 2023 Mar; 9(4):. PubMed ID: 37103226 [TBL] [Abstract][Full Text] [Related]
16. Differentiating between glioblastomas with and without isocitrate dehydrogenase gene mutation by findings on conventional magnetic resonance images. Shimizu T; Matsushima S; Fukasawa N; Akasaki Y; Mori R; Ojiri H J Clin Neurosci; 2020 Jun; 76():140-144. PubMed ID: 32291242 [TBL] [Abstract][Full Text] [Related]
17. Semantic imaging features predict disease progression and survival in glioblastoma multiforme patients. Peeken JC; Hesse J; Haller B; Kessel KA; Nüsslin F; Combs SE Strahlenther Onkol; 2018 Jun; 194(6):580-590. PubMed ID: 29442128 [TBL] [Abstract][Full Text] [Related]
18. Identification of magnetic resonance imaging features for the prediction of molecular profiles of newly diagnosed glioblastoma. Ahn SS; An C; Park YW; Han K; Chang JH; Kim SH; Lee SK; Cha S J Neurooncol; 2021 Aug; 154(1):83-92. PubMed ID: 34191225 [TBL] [Abstract][Full Text] [Related]
19. Non-invasive prediction of p53 and Ki-67 labelling indices and O-6-methylguanine-DNA methyltransferase promoter methylation status in adult patients with isocitrate dehydrogenase wild-type glioblastomas using diffusion-weighted imaging and dynamic susceptibility contrast-enhanced perfusion-weighted imaging combined with conventional MRI. Xing Z; Huang W; Su Y; Yang X; Zhou X; Cao D Clin Radiol; 2022 Aug; 77(8):e576-e584. PubMed ID: 35469666 [TBL] [Abstract][Full Text] [Related]