BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38135816)

  • 1. Assessment of Ki-67 expression levels in IDH-wildtype glioblastoma using logistic regression modelling of VASARI features.
    Bai L; Jiang J; Zhou J
    Neurosurg Rev; 2023 Dec; 47(1):20. PubMed ID: 38135816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vasari-Based Features Nomogram to Predict the Tumor-Infiltrating CD8+ T Cell Levels in Glioblastoma.
    Xue C; Zhou Q; Zhang B; Ke X; Zhang P; Liu X; Li S; Deng J; Zhou J
    Acad Radiol; 2024 May; 31(5):2050-2060. PubMed ID: 37985291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beyond invasive biopsies: using VASARI MRI features to predict grade and molecular parameters in gliomas.
    Setyawan NH; Choridah L; Nugroho HA; Malueka RG; Dwianingsih EK
    Cancer Imaging; 2024 Jan; 24(1):3. PubMed ID: 38167551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging predictors of 4q12 amplified and RB1 mutated glioblastoma IDH-wildtype.
    Dono A; Torres J; Nunez L; Arevalo O; Rodriguez-Quinteros JC; Riascos RF; Kamali A; Tandon N; Ballester LY; Esquenazi Y
    J Neurooncol; 2024 Mar; 167(1):99-109. PubMed ID: 38351343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nomogram incorporating preoperative MRI-VASARI features for differentiating intracranial extraventricular ependymoma from glioblastoma.
    Yao Y; Fu Y; Zhou G; Wang X; Li L; Mao Y; Wang J; Tan Z; Jiang M; Yi X; Chen BT
    Quant Imaging Med Surg; 2024 Mar; 14(3):2255-2266. PubMed ID: 38545063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning-based radiomic, clinical and semantic feature analysis for predicting overall survival and MGMT promoter methylation status in patients with glioblastoma.
    Lu Y; Patel M; Natarajan K; Ughratdar I; Sanghera P; Jena R; Watts C; Sawlani V
    Magn Reson Imaging; 2020 Dec; 74():161-170. PubMed ID: 32980505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling MR and clinical features in grade II/III astrocytomas to predict IDH mutation status.
    Hyare H; Rice L; Thust S; Nachev P; Jha A; Milic M; Brandner S; Rees J
    Eur J Radiol; 2019 May; 114():120-127. PubMed ID: 31005161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MRI Features May Predict Molecular Features of Glioblastoma in
    Park CJ; Han K; Kim H; Ahn SS; Choi D; Park YW; Chang JH; Kim SH; Cha S; Lee SK
    AJNR Am J Neuroradiol; 2021 Mar; 42(3):448-456. PubMed ID: 33509914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential Utility of Visually AcceSAble Rembrandt Images Assessment in Brain Astrocytoma Grading.
    Yu J; Wang M; Song J; Huang D; Hong X
    J Comput Assist Tomogr; 2016; 40(2):301-6. PubMed ID: 26978002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perfusion Parameter Obtained on 3-Tesla Magnetic Resonance Imaging and the Ki-67 Labeling Index Predict the Overall Survival of Glioblastoma.
    Fudaba H; Momii Y; Matsuta H; Onishi K; Kawasaki Y; Sugita K; Shimomura T; Fujiki M
    World Neurosurg; 2021 May; 149():e469-e480. PubMed ID: 33567368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vasari Scoring System in Discerning between Different Degrees of Glioma and IDH Status Prediction: A Possible Machine Learning Application?
    Gemini L; Tortora M; Giordano P; Prudente ME; Villa A; Vargas O; Giugliano MF; Somma F; Marchello G; Chiaramonte C; Gaetano M; Frio F; Di Giorgio E; D'Avino A; Tortora F; D'Agostino V; Negro A
    J Imaging; 2023 Mar; 9(4):. PubMed ID: 37103226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiating between glioblastomas with and without isocitrate dehydrogenase gene mutation by findings on conventional magnetic resonance images.
    Shimizu T; Matsushima S; Fukasawa N; Akasaki Y; Mori R; Ojiri H
    J Clin Neurosci; 2020 Jun; 76():140-144. PubMed ID: 32291242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semantic imaging features predict disease progression and survival in glioblastoma multiforme patients.
    Peeken JC; Hesse J; Haller B; Kessel KA; Nüsslin F; Combs SE
    Strahlenther Onkol; 2018 Jun; 194(6):580-590. PubMed ID: 29442128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of magnetic resonance imaging features for the prediction of molecular profiles of newly diagnosed glioblastoma.
    Ahn SS; An C; Park YW; Han K; Chang JH; Kim SH; Lee SK; Cha S
    J Neurooncol; 2021 Aug; 154(1):83-92. PubMed ID: 34191225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-invasive prediction of p53 and Ki-67 labelling indices and O-6-methylguanine-DNA methyltransferase promoter methylation status in adult patients with isocitrate dehydrogenase wild-type glioblastomas using diffusion-weighted imaging and dynamic susceptibility contrast-enhanced perfusion-weighted imaging combined with conventional MRI.
    Xing Z; Huang W; Su Y; Yang X; Zhou X; Cao D
    Clin Radiol; 2022 Aug; 77(8):e576-e584. PubMed ID: 35469666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MRI Features Associated with TERT Promoter Mutation Status in Glioblastoma.
    Ivanidze J; Lum M; Pisapia D; Magge R; Ramakrishna R; Kovanlikaya I; Fine HA; Chiang GC
    J Neuroimaging; 2019 May; 29(3):357-363. PubMed ID: 30644143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is Ki-67 index overexpression in IDH wild type glioblastoma a predictor of shorter Progression Free survival? A clinical and Molecular analytic investigation.
    Armocida D; Frati A; Salvati M; Santoro A; Pesce A
    Clin Neurol Neurosurg; 2020 Nov; 198():106126. PubMed ID: 32861131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic resonance imaging findings of intracranial extraventricular ependymoma: A retrospective multi-center cohort study of 114 cases.
    Li L; Fu Y; Zhang Y; Mao Y; Huang D; Yi X; Wang J; Tan Z; Jiang M; Chen BT
    Cancer Med; 2023 Aug; 12(15):16195-16206. PubMed ID: 37376821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A combinatorial radiographic phenotype may stratify patient survival and be associated with invasion and proliferation characteristics in glioblastoma.
    Rao A; Rao G; Gutman DA; Flanders AE; Hwang SN; Rubin DL; Colen RR; Zinn PO; Jain R; Wintermark M; Kirby JS; Jaffe CC; Freymann J;
    J Neurosurg; 2016 Apr; 124(4):1008-17. PubMed ID: 26473782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Qualitative and Quantitative MRI Analysis in IDH1 Genotype Prediction of Lower-Grade Gliomas: A Machine Learning Approach.
    Cao M; Suo S; Zhang X; Wang X; Xu J; Yang W; Zhou Y
    Biomed Res Int; 2021; 2021():1235314. PubMed ID: 33553421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.