These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 38135949)

  • 21. Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering.
    Choi DJ; Choi K; Park SJ; Kim YJ; Chung S; Kim CH
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769034
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 1Biomaterial inks for extrusion-based 3D bioprinting: Property, classification, modification, and selection.
    Xiaorui L; Fuyin Z; Xudong W; Xuezheng G; Shudong Z; Hui L; Dandan D; Yubing L; Lizhen W; Yubo F
    Int J Bioprint; 2023; 9(2):649. PubMed ID: 37065674
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D-Reactive printing of engineered alginate inks.
    Sardelli L; Tunesi M; Briatico-Vangosa F; Petrini P
    Soft Matter; 2021 Sep; 17(35):8105-8117. PubMed ID: 34525160
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chocolate-based Ink Three-dimensional Printing (Ci3DP).
    Karyappa R; Hashimoto M
    Sci Rep; 2019 Oct; 9(1):14178. PubMed ID: 31578354
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D Printing of Microgel Scaffolds with Tunable Void Fraction to Promote Cell Infiltration.
    Seymour AJ; Shin S; Heilshorn SC
    Adv Healthc Mater; 2021 Sep; 10(18):e2100644. PubMed ID: 34342179
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The examination of vegetable- and mineral oil-based inks' effects on print quality: Green printing effects with different oils.
    Aydemir C; Yenidoğan S; Karademir A; Arman Kandirmaz E
    J Appl Biomater Funct Mater; 2018 Jul; 16(3):137-143. PubMed ID: 29618225
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient Inkjet Printing of Graphene-Based Elements: Influence of Dispersing Agent on Ink Viscosity.
    Dybowska-Sarapuk L; Kielbasinski K; Arazna A; Futera K; Skalski A; Janczak D; Sloma M; Jakubowska M
    Nanomaterials (Basel); 2018 Aug; 8(8):. PubMed ID: 30096800
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bio-ink properties and printability for extrusion printing living cells.
    Chung JHY; Naficy S; Yue Z; Kapsa R; Quigley A; Moulton SE; Wallace GG
    Biomater Sci; 2013 Jul; 1(7):763-773. PubMed ID: 32481829
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent advances on enhancing 3D printing quality of protein-based inks: A review.
    Tian H; Wu J; Hu Y; Chen X; Cai X; Wen Y; Chen H; Huang J; Wang S
    Compr Rev Food Sci Food Saf; 2024 May; 23(3):e13349. PubMed ID: 38638060
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering.
    Kumar A; I Matari IA; Han SS
    Biofabrication; 2020 Mar; 12(2):025029. PubMed ID: 32029691
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development and thorough characterization of the processing steps of an ink for 3D printing for bone tissue engineering.
    Müller M; Fisch P; Molnar M; Eggert S; Binelli M; Maniura-Weber K; Zenobi-Wong M
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110510. PubMed ID: 31924006
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rheological Issues in Carbon-Based Inks for Additive Manufacturing.
    O'Mahony C; Haq EU; Sillien C; Tofail SAM
    Micromachines (Basel); 2019 Jan; 10(2):. PubMed ID: 30700026
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The significance of biomacromolecule alginate for the 3D printing of hydrogels for biomedical applications.
    Varaprasad K; Karthikeyan C; Yallapu MM; Sadiku R
    Int J Biol Macromol; 2022 Jul; 212():561-578. PubMed ID: 35643157
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessing non-synthetic crosslinkers in biomaterial inks based on polymers of marine origin to increase the shape fidelity in 3D extrusion printing.
    Carvalho DN; Dani S; Sotelo CG; Pérez-Martín RI; Reis RL; Silva TH; Gelinsky M
    Biomed Mater; 2023 Aug; 18(5):. PubMed ID: 37531962
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design of drug-loaded 3D printing biomaterial inks and tailor-made pharmaceutical forms for controlled release.
    Olmos-Juste R; Guaresti O; Calvo-Correas T; Gabilondo N; Eceiza A
    Int J Pharm; 2021 Nov; 609():121124. PubMed ID: 34597726
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploitation of Cationic Silica Nanoparticles for Bioprinting of Large-Scale Constructs with High Printing Fidelity.
    Lee M; Bae K; Guillon P; Chang J; Arlov Ø; Zenobi-Wong M
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):37820-37828. PubMed ID: 30360117
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the progress of hydrogel-based 3D printing: Correlating rheological properties with printing behaviour.
    Bom S; Ribeiro R; Ribeiro HM; Santos C; Marto J
    Int J Pharm; 2022 Mar; 615():121506. PubMed ID: 35085727
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A tunable extruded 3D printing platform using thermo-sensitive pastes.
    Yang Y; Wang X; Lin X; Xie L; Ivone R; Shen J; Yang G
    Int J Pharm; 2020 Jun; 583():119360. PubMed ID: 32335080
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication of a Crystalline Nanocellulose Embedded Agarose Biomaterial Ink for Bone Marrow-Derived Mast Cell Culture.
    Karamchand L; Wagner A; Alam SB; Kulka M
    J Vis Exp; 2021 May; (171):. PubMed ID: 34057448
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Printability assessment of psyllium husk (isabgol)/gelatin blends using rheological and mechanical properties.
    Agarwal PS; Poddar S; Varshney N; Sahi AK; Vajanthri KY; Yadav K; Parmar AS; Mahto SK
    J Biomater Appl; 2021 Apr; 35(9):1132-1142. PubMed ID: 33377809
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.