BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38135992)

  • 1. High-Accuracy Neuro-Navigation with Computer Vision for Frameless Registration and Real-Time Tracking.
    Chiurillo I; Sha RM; Robertson FC; Liu J; Li J; Le Mau H; Amich JM; Gormley WB; Stolyarov R
    Bioengineering (Basel); 2023 Dec; 10(12):. PubMed ID: 38135992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frameless neuronavigation with computer vision and real-time tracking for bedside external ventricular drain placement: a cadaveric study.
    Robertson FC; Sha RM; Amich JM; Essayed W; Lal A; Lee BH; Calvachi Prieto P; Tokuda J; Weaver JC; Kirollos RW; Chen MW; Gormley WB
    J Neurosurg; 2022 May; 136(5):1475-1484. PubMed ID: 34653985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereotactic Neurosurgical Robotics With Real-Time Patient Tracking: A Cadaveric Study.
    Robertson FC; Wu KC; Sha RM; Amich JM; Lal A; Lee BH; Kirollos RW; Chen MW; Gormley WB
    Oper Neurosurg (Hagerstown); 2022 Jun; 22(6):425-432. PubMed ID: 35867082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical application of neuro-navigation in a series of single burr-hole procedures.
    Tirakotai W; Riegel T; Sure U; Bozinov O; Hellwig D; Bertalanffy H
    Zentralbl Neurochir; 2004 May; 65(2):57-64. PubMed ID: 15118919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frameless stereotactic guided neurosurgery: clinical experience with an infrared based pointer device navigation system.
    Roessler K; Ungersboeck K; Dietrich W; Aichholzer M; Hittmeir K; Matula C; Czech T; Koos WT
    Acta Neurochir (Wien); 1997; 139(6):551-9. PubMed ID: 9248590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application accuracy of computed tomography-based, image-guided navigation of temporal bone.
    Pillai P; Sammet S; Ammirati M
    Neurosurgery; 2008 Oct; 63(4 Suppl 2):326-32; discussion 332-3. PubMed ID: 18981839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Image-guided frameless stereotactic needle biopsy in awake patients without the use of rigid head fixation.
    Amin DV; Lozanne K; Parry PV; Engh JA; Seelman K; Mintz A
    J Neurosurg; 2011 May; 114(5):1414-20. PubMed ID: 20722608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel magnetic technology for intraoperative intracranial frameless navigation: in vivo and in vitro results.
    Zaaroor M; Bejerano Y; Weinfeld Z; Ben-Haim S
    Neurosurgery; 2001 May; 48(5):1100-7; discussion 1107-8. PubMed ID: 11334277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast-MICP for frameless image-guided surgery.
    Lee JD; Huang CH; Wang ST; Lin CW; Lee ST
    Med Phys; 2010 Sep; 37(9):4551-9. PubMed ID: 20964172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced cranial navigation.
    Mert A; Gan LS; Knosp E; Sutherland GR; Wolfsberger S
    Neurosurgery; 2013 Jan; 72 Suppl 1():43-53. PubMed ID: 23254812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noctopus: a novel device and method for patient registration and navigation in image-guided cranial surgery.
    Özbek Y; Bárdosi Z; Freysinger W
    Int J Comput Assist Radiol Surg; 2024 May; ():. PubMed ID: 38748051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Application of intraoperative electromagnetic frameless navigation in transcranial and endoscopic neurosurgical interventions].
    Shurkhay VA; Goryaynov SA; Kutin MA; Eolchiyan SA; Capitanov DN; Fomichev DV; Kalinin PL; Shkarubo AN; Kopachev DN; Melikyan AG; Nersesyan MV; Shkatova AM; Konovalov AN; Potapov AA
    Zh Vopr Neirokhir Im N N Burdenko; 2017; 81(5):5-16. PubMed ID: 29076463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application accuracy in frameless image-guided neurosurgery: a comparison study of three patient-to-image registration methods.
    Woerdeman PA; Willems PW; Noordmans HJ; Tulleken CA; van der Sprenkel JW
    J Neurosurg; 2007 Jun; 106(6):1012-6. PubMed ID: 17564173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surgical Tracking, Registration, and Navigation Characterization for Image-guided Renal Interventions.
    Jackson P; Simon R; Linte C
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5081-5084. PubMed ID: 33019129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skull-fixated fiducial markers improve accuracy in staged frameless stereotactic epilepsy surgery in children.
    Thompson EM; Anderson GJ; Roberts CM; Hunt MA; Selden NR
    J Neurosurg Pediatr; 2011 Jan; 7(1):116-9. PubMed ID: 21194296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Image-guided neurosurgery comparing a pointer device system with a navigating microscope: a retrospective analysis of 208 cases.
    Roessler K; Ungersboeck K; Aichholzer M; Dietrich W; Czech T; Heimberger K; Matula C; Koos WT
    Minim Invasive Neurosurg; 1998 Jun; 41(2):53-7. PubMed ID: 9651910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autonomous neuro-registration for robot-based neurosurgery.
    Kaushik A; Dwarakanath TA; Bhutani G
    Int J Comput Assist Radiol Surg; 2018 Nov; 13(11):1807-1817. PubMed ID: 30027303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reliable navigation registration in cranial and spine surgery based on intraoperative computed tomography.
    Carl B; Bopp M; Saß B; Pojskic M; Gjorgjevski M; Voellger B; Nimsky C
    Neurosurg Focus; 2019 Dec; 47(6):E11. PubMed ID: 31786552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of magnetic tracking and optical tracking by simultaneous use of two independent frameless stereotactic systems.
    Mascott CR
    Neurosurgery; 2005 Oct; 57(4 Suppl):295-301; discussion 295-301. PubMed ID: 16234678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Use of Skin Staples as Fiducial Markers to Confirm Intraoperative Spinal Navigation Registration and Accuracy.
    Alvarez-Breckenridge C; Muir M; Rhines LD; Tatsui CE
    Oper Neurosurg (Hagerstown); 2021 Aug; 21(3):E193-E198. PubMed ID: 34038952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.