These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38136032)

  • 1. A Real-Time Control Method for Upper Limb Exoskeleton Based on Active Torque Prediction Model.
    Li S; Zhang L; Meng Q; Yu H
    Bioengineering (Basel); 2023 Dec; 10(12):. PubMed ID: 38136032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and kinematical performance analysis of the 7-DOF upper-limb exoskeleton toward improving human-robot interface in active and passive movement training.
    Meng Q; Fei C; Jiao Z; Xie Q; Dai Y; Fan Y; Shen Z; Yu H
    Technol Health Care; 2022; 30(5):1167-1182. PubMed ID: 35342067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of velocity and acceleration in joint angle estimation for an EMG-Based upper-limb exoskeleton control.
    Tang Z; Yu H; Yang H; Zhang L; Zhang L
    Comput Biol Med; 2022 Feb; 141():105156. PubMed ID: 34942392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-Time Evaluation of the Signal Processing of sEMG Used in Limb Exoskeleton Rehabilitation System.
    Gao B; Wei C; Ma H; Yang S; Ma X; Zhang S
    Appl Bionics Biomech; 2018; 2018():1391032. PubMed ID: 30405746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An upper-limb power-assist exoskeleton using proportional myoelectric control.
    Tang Z; Zhang K; Sun S; Gao Z; Zhang L; Yang Z
    Sensors (Basel); 2014 Apr; 14(4):6677-94. PubMed ID: 24727501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SE-TCN network for continuous estimation of upper limb joint angles.
    Liu X; Wang J; Liang T; Lou C; Wang H; Liu X
    Math Biosci Eng; 2023 Jan; 20(2):3237-3260. PubMed ID: 36899579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MCSNet: Channel Synergy-Based Human-Exoskeleton Interface With Surface Electromyogram.
    Shi K; Huang R; Peng Z; Mu F; Yang X
    Front Neurosci; 2021; 15():704603. PubMed ID: 34867145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Path Planning and Impedance Control of a Soft Modular Exoskeleton for Coordinated Upper Limb Rehabilitation.
    Liu Q; Liu Y; Li Y; Zhu C; Meng W; Ai Q; Xie SQ
    Front Neurorobot; 2021; 15():745531. PubMed ID: 34790109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pilot Study of a Powered Exoskeleton for Upper Limb Rehabilitation Based on the Wheelchair.
    Meng Q; Xie Q; Shao H; Cao W; Wang F; Wang L; Yu H; Li S
    Biomed Res Int; 2019; 2019():9627438. PubMed ID: 31976331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A noise-suppressing neural network approach for upper limb human-machine interactive control based on sEMG signals.
    Zhang B; Lan X; Wang G; Pang Z; Zhang X; Sun Z
    Front Neurorobot; 2022; 16():1047325. PubMed ID: 36406950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shoulder muscle activation pattern recognition based on sEMG and machine learning algorithms.
    Jiang Y; Chen C; Zhang X; Chen C; Zhou Y; Ni G; Muh S; Lemos S
    Comput Methods Programs Biomed; 2020 Dec; 197():105721. PubMed ID: 32882593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot.
    Ao D; Song R; Gao J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1125-1134. PubMed ID: 27337719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. sEMG-Based Motion Recognition of Upper Limb Rehabilitation Using the Improved Yolo-v4 Algorithm.
    Bu D; Guo S; Li H
    Life (Basel); 2022 Jan; 12(1):. PubMed ID: 35054457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review of adaptive control for stroke lower limb exoskeleton rehabilitation robot based on motion intention recognition.
    Su D; Hu Z; Wu J; Shang P; Luo Z
    Front Neurorobot; 2023; 17():1186175. PubMed ID: 37465413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning.
    Luo S; Androwis G; Adamovich S; Nunez E; Su H; Zhou X
    J Neuroeng Rehabil; 2023 Mar; 20(1):34. PubMed ID: 36935514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. sEMG-based joint force control for an upper-limb power-assist exoskeleton robot.
    Li Z; Wang B; Sun F; Yang C; Xie Q; Zhang W
    IEEE J Biomed Health Inform; 2014 May; 18(3):1043-50. PubMed ID: 24235314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive interaction torque-based AAN control for lower limb rehabilitation exoskeleton.
    Wang Y; Wang H; Tian Y
    ISA Trans; 2022 Sep; 128(Pt A):184-197. PubMed ID: 34716010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feature Extraction of Shoulder Joint's Voluntary Flexion-Extension Movement Based on Electroencephalography Signals for Power Assistance.
    Liang H; Zhu C; Iwata Y; Maedono S; Mochita M; Liu C; Ueda N; Li P; Yu H; Yan Y; Duan F
    Bioengineering (Basel); 2018 Dec; 6(1):. PubMed ID: 30586920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A High-Level Control Algorithm Based on sEMG Signalling for an Elbow Joint SMA Exoskeleton.
    Copaci D; Serrano D; Moreno L; Blanco D
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30072609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Upper-Limb Rehabilitation Exoskeleton System Controlled by MI Recognition Model With Deep Emphasized Informative Features in a VR Scene.
    Tang Z; Wang H; Cui Z; Jin X; Zhang L; Peng Y; Xing B
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4390-4401. PubMed ID: 37910412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.