These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38136457)

  • 1. Confounding Factor Analysis for Vocal Fold Oscillations.
    Gençağa D
    Entropy (Basel); 2023 Nov; 25(12):. PubMed ID: 38136457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deriving Vocal Fold Oscillation Information from Recorded Voice Signals Using Models of Phonation.
    Zhao W; Singh R
    Entropy (Basel); 2023 Jul; 25(7):. PubMed ID: 37509986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Acoustic-Signal-Based Preventive Program for University Lecturers' Vocal Health.
    Paniagua MS; Pérez CJ; Calle-Alonso F; Salazar C
    J Voice; 2020 Jan; 34(1):88-99. PubMed ID: 30072204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental study of vocal-ventricular fold oscillations in voice production.
    Matsumoto T; Kanaya M; Ishimura K; Tokuda IT
    J Acoust Soc Am; 2021 Jan; 149(1):271. PubMed ID: 33514158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relating Cepstral Peak Prominence to Cyclical Parameters of Vocal Fold Vibration from High-Speed Videoendoscopy Using Machine Learning: A Pilot Study.
    Popolo PS; Johnson AM
    J Voice; 2021 Sep; 35(5):703-716. PubMed ID: 32173147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voice efficiency for different voice qualities combining experimentally derived sound signals and numerical modeling of the vocal tract.
    Fleischer M; Rummel S; Stritt F; Fischer J; Bock M; Echternach M; Richter B; Traser L
    Front Physiol; 2022; 13():1081622. PubMed ID: 36620215
    [No Abstract]   [Full Text] [Related]  

  • 7. Euclidean Distances as measures of speaker similarity including identical twin pairs: A forensic investigation using source and filter voice characteristics.
    San Segundo E; Tsanas A; Gómez-Vilda P
    Forensic Sci Int; 2017 Jan; 270():25-38. PubMed ID: 27912151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and Validation of a Respiratory-Responsive Vocal Biomarker-Based Tool for Generalizable Detection of Respiratory Impairment: Independent Case-Control Studies in Multiple Respiratory Conditions Including Asthma, Chronic Obstructive Pulmonary Disease, and COVID-19.
    Kaur S; Larsen E; Harper J; Purandare B; Uluer A; Hasdianda MA; Umale NA; Killeen J; Castillo E; Jariwala S
    J Med Internet Res; 2023 Apr; 25():e44410. PubMed ID: 36881540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning and machine learning-based voice analysis for the detection of COVID-19: A proposal and comparison of architectures.
    Costantini G; Dr VC; Robotti C; Benazzo M; Pietrantonio F; Di Girolamo S; Pisani A; Canzi P; Mauramati S; Bertino G; Cassaniti I; Baldanti F; Saggio G
    Knowl Based Syst; 2022 Oct; 253():109539. PubMed ID: 35915642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vocal fold mucus aggregation in persons with voice disorders.
    Bonilha HS; White L; Kuckhahn K; Gerlach TT; Deliyski DD
    J Commun Disord; 2012; 45(4):304-11. PubMed ID: 22510352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Immediate Impact of Targeted Exercises on Voice Characteristics in Female Speakers With Phonotraumatic Vocal Fold Lesions.
    Free N; Stemple JC; Smith JA; Phyland DJ
    J Voice; 2024 Sep; 38(5):1251.e33-1251.e52. PubMed ID: 35140022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Deep Learning Approach for Quantifying Vocal Fold Dynamics During Connected Speech Using Laryngeal High-Speed Videoendoscopy.
    Yousef AM; Deliyski DD; Zacharias SRC; de Alarcon A; Orlikoff RF; Naghibolhosseini M
    J Speech Lang Hear Res; 2022 Jun; 65(6):2098-2113. PubMed ID: 35605603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of Vocal Fold Image Obstructions in High-Speed Videoendoscopy During Connected Speech in Adductor Spasmodic Dysphonia: A Convolutional Neural Networks Approach.
    Yousef AM; Deliyski DD; Zacharias SRC; Naghibolhosseini M
    J Voice; 2024 Jul; 38(4):951-962. PubMed ID: 35304042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural architecture underlying person perception from in-group and out-group voices.
    Jiang X; Sanford R; Pell MD
    Neuroimage; 2018 Nov; 181():582-597. PubMed ID: 30031933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of level difference between left and right vocal folds on phonation: Physical experiment and theoretical study.
    Tokuda IT; Shimamura R
    J Acoust Soc Am; 2017 Aug; 142(2):482. PubMed ID: 28863607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An investigation of vocal tract characteristics for acoustic discrimination of pathological voices.
    Lee JW; Kang HG; Choi JY; Son YI
    Biomed Res Int; 2013; 2013():758731. PubMed ID: 24288686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rethinking glottal midline detection.
    Kist AM; Zilker J; Gómez P; Schützenberger A; Döllinger M
    Sci Rep; 2020 Nov; 10(1):20723. PubMed ID: 33244031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the ventricular folds on a voice source with specified vocal fold motion.
    McGowan RS; Howe MS
    J Acoust Soc Am; 2010 Mar; 127(3):1519-27. PubMed ID: 20329852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying bias in models that detect vocal fold paralysis from audio recordings using explainable machine learning and clinician ratings.
    Low DM; Rao V; Randolph G; Song PC; Ghosh SS
    medRxiv; 2024 Mar; ():. PubMed ID: 33501466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ventricular fold oscillations lower the vocal pitch in rhesus macaques.
    Miyazaki R; Yoshitani T; Kanaya M; Miyachi S; Kaneko A; Kinoshita Y; Nakamura K; Nishimura T; Tokuda IT
    J Exp Biol; 2023 Jun; 226(12):. PubMed ID: 37341159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.