These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38136489)

  • 1. Unlocking the Key to Accelerating Convergence in the Discrete Velocity Method for Flows in the Near Continuous/Continuous Flow Regimes.
    Han L; Yang L; Li Z; Wu J; Du Y; Shen X
    Entropy (Basel); 2023 Nov; 25(12):. PubMed ID: 38136489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discrete unified gas-kinetic wave-particle method for flows in all flow regimes.
    Yang LM; Li ZH; Shu C; Liu YY; Liu W; Wu J
    Phys Rev E; 2023 Jul; 108(1-2):015302. PubMed ID: 37583183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conservative discrete-velocity method for the ellipsoidal Fokker-Planck equation in gas-kinetic theory.
    Liu S; Yuan R; Javid U; Zhong C
    Phys Rev E; 2019 Sep; 100(3-1):033310. PubMed ID: 31640059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrete unified gas kinetic scheme for all Knudsen number flows: low-speed isothermal case.
    Guo Z; Xu K; Wang R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033305. PubMed ID: 24125383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unified implicit kinetic scheme for steady multiscale heat transfer based on the phonon Boltzmann transport equation.
    Zhang C; Guo Z; Chen S
    Phys Rev E; 2017 Dec; 96(6-1):063311. PubMed ID: 29347329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the kinetic model equations.
    Liu S; Zhong C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033306. PubMed ID: 24730966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal lattice Bhatnagar-Gross-Krook model for flows with viscous heat dissipation in the incompressible limit.
    Shi Y; Zhao TS; Guo ZL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066310. PubMed ID: 15697505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional lattice Boltzmann model for compressible flows.
    Sun C; Hsu AT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016303. PubMed ID: 12935242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From the continuous to the lattice Boltzmann equation: the discretization problem and thermal models.
    Philippi PC; Hegele LA; Dos Santos LO; Surmas R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056702. PubMed ID: 16803069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chebyshev collocation spectral lattice Boltzmann method for simulation of low-speed flows.
    Hejranfar K; Hajihassanpour M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013301. PubMed ID: 25679733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arbitrary Lagrangian-Eulerian-type discrete unified gas kinetic scheme for low-speed continuum and rarefied flow simulations with moving boundaries.
    Wang Y; Zhong C; Liu S
    Phys Rev E; 2019 Dec; 100(6-1):063310. PubMed ID: 31962427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-order weighted essentially nonoscillatory finite-difference formulation of the lattice Boltzmann method in generalized curvilinear coordinates.
    Hejranfar K; Saadat MH; Taheri S
    Phys Rev E; 2017 Feb; 95(2-1):023314. PubMed ID: 28297984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mesoscopic Simulation of the (2 + 1)-Dimensional Wave Equation with Nonlinear Damping and Source Terms Using the Lattice Boltzmann BGK Model.
    Li D; Lai H; Shi B
    Entropy (Basel); 2019 Apr; 21(4):. PubMed ID: 33267104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of collision models on the physical properties and the stability of lattice Boltzmann methods.
    Coreixas C; Wissocq G; Chopard B; Latt J
    Philos Trans A Math Phys Eng Sci; 2020 Jul; 378(2175):20190397. PubMed ID: 32564722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale steady discrete unified gas kinetic scheme with macroscopic coarse mesh acceleration using preconditioned Krylov subspace method for multigroup neutron Boltzmann transport equation.
    Zhou X; Guo Z
    Phys Rev E; 2023 Apr; 107(4-2):045304. PubMed ID: 37198859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling Thermally Induced Non-Equilibrium Gas Flows by Coupling Kinetic and Extended Thermodynamic Methods.
    Yang W; Gu XJ; Emerson DR; Zhang Y; Tang S
    Entropy (Basel); 2019 Aug; 21(8):. PubMed ID: 33267529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lattice Fokker Planck for dilute polymer dynamics.
    Singh S; Subramanian G; Ansumali S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013301. PubMed ID: 23944577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semi-Lagrangian implicit Bhatnagar-Gross-Krook collision model for the finite-volume discrete Boltzmann method.
    Chen L; Succi S; Cai X; Schaefer L
    Phys Rev E; 2020 Jun; 101(6-1):063301. PubMed ID: 32688570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lattice Poisson-Boltzmann simulations of electro-osmotic flows in microchannels.
    Wang J; Wang M; Li Z
    J Colloid Interface Sci; 2006 Apr; 296(2):729-36. PubMed ID: 16226765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin of spurious oscillations in lattice Boltzmann simulations of oscillatory noncontinuum gas flows.
    Shi Y; Ladiges DR; Sader JE
    Phys Rev E; 2019 Nov; 100(5-1):053317. PubMed ID: 31869922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.