These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38136532)

  • 1. A Statistical Approach to Neutron Stars' Crust-Core Transition Density and Pressure.
    Bednarek I; Olchawa W; Sładkowski J; Syska J
    Entropy (Basel); 2023 Dec; 25(12):. PubMed ID: 38136532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From hadrons to quarks in neutron stars: a review.
    Baym G; Hatsuda T; Kojo T; Powell PD; Song Y; Takatsuka T
    Rep Prog Phys; 2018 May; 81(5):056902. PubMed ID: 29424363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neutron star structure and the neutron radius of 208Pb.
    Horowitz CJ; Piekarewicz J
    Phys Rev Lett; 2001 Jun; 86(25):5647-50. PubMed ID: 11415324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Astrophysical Constraints on the Symmetry Energy and the Neutron Skin of ^{208}Pb with Minimal Modeling Assumptions.
    Essick R; Tews I; Landry P; Schwenk A
    Phys Rev Lett; 2021 Nov; 127(19):192701. PubMed ID: 34797158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neutron Star Tidal Deformabilities Constrained by Nuclear Theory and Experiment.
    Lim Y; Holt JW
    Phys Rev Lett; 2018 Aug; 121(6):062701. PubMed ID: 30141641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superfluid Density of Neutrons in the Inner Crust of Neutron Stars: New Life for Pulsar Glitch Models.
    Watanabe G; Pethick CJ
    Phys Rev Lett; 2017 Aug; 119(6):062701. PubMed ID: 28949649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constraints on neutron star crusts from oscillations in giant flares.
    Steiner AW; Watts AL
    Phys Rev Lett; 2009 Oct; 103(18):181101. PubMed ID: 19905795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plumbing neutron stars to new depths with the binding energy of the exotic nuclide 82Zn.
    Wolf RN; Beck D; Blaum K; Böhm Ch; Borgmann Ch; Breitenfeldt M; Chamel N; Goriely S; Herfurth F; Kowalska M; Kreim S; Lunney D; Manea V; Minaya Ramirez E; Naimi S; Neidherr D; Rosenbusch M; Schweikhard L; Stanja J; Wienholtz F; Zuber K
    Phys Rev Lett; 2013 Jan; 110(4):041101. PubMed ID: 25166148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Breaking strain of neutron star crust and gravitational waves.
    Horowitz CJ; Kadau K
    Phys Rev Lett; 2009 May; 102(19):191102. PubMed ID: 19518937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constraining the Nuclear Symmetry Energy with Multimessenger Resonant Shattering Flares.
    Neill D; Preston R; Newton WG; Tsang D
    Phys Rev Lett; 2023 Mar; 130(11):112701. PubMed ID: 37001080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neutron Skins and Neutron Stars in the Multimessenger Era.
    Fattoyev FJ; Piekarewicz J; Horowitz CJ
    Phys Rev Lett; 2018 Apr; 120(17):172702. PubMed ID: 29756822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing Crust Meltdown in Inspiraling Binary Neutron Stars.
    Pan Z; Lyu Z; Bonga B; Ortiz N; Yang H
    Phys Rev Lett; 2020 Nov; 125(20):201102. PubMed ID: 33258644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forecasting neutron star temperatures: predictability and variability.
    Page D; Reddy S
    Phys Rev Lett; 2013 Dec; 111(24):241102. PubMed ID: 24483640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamically Consistent Equation of State for an Accreted Neutron Star Crust.
    Gusakov ME; Chugunov AI
    Phys Rev Lett; 2020 May; 124(19):191101. PubMed ID: 32469588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-of-flight mass measurements for nuclear processes in neutron star crusts.
    Estradé A; Matoš M; Schatz H; Amthor AM; Bazin D; Beard M; Becerril A; Brown EF; Cyburt R; Elliot T; Gade A; Galaviz D; George S; Gupta SS; Hix WR; Lau R; Lorusso G; Möller P; Pereira J; Portillo M; Rogers AM; Shapira D; Smith E; Stolz A; Wallace M; Wiescher M
    Phys Rev Lett; 2011 Oct; 107(17):172503. PubMed ID: 22107512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constraining neutron-star matter with microscopic and macroscopic collisions.
    Huth S; Pang PTH; Tews I; Dietrich T; Le Fèvre A; Schwenk A; Trautmann W; Agarwal K; Bulla M; Coughlin MW; Van Den Broeck C
    Nature; 2022 Jun; 606(7913):276-280. PubMed ID: 35676430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong neutrino cooling by cycles of electron capture and β- decay in neutron star crusts.
    Schatz H; Gupta S; Möller P; Beard M; Brown EF; Deibel AT; Gasques LR; Hix WR; Keek L; Lau R; Steiner AW; Wiescher M
    Nature; 2014 Jan; 505(7481):62-5. PubMed ID: 24291788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Connecting neutron star observations to three-body forces in neutron matter and to the nuclear symmetry energy.
    Steiner AW; Gandolfi S
    Phys Rev Lett; 2012 Feb; 108(8):081102. PubMed ID: 22463511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peeling Off Neutron Skins from Neutron-Rich Nuclei: Constraints on the Symmetry Energy from Neutron-Removal Cross Sections.
    Aumann T; Bertulani CA; Schindler F; Typel S
    Phys Rev Lett; 2017 Dec; 119(26):262501. PubMed ID: 29328702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface emission from neutron stars and implications for the physics of their interiors.
    Ozel F
    Rep Prog Phys; 2013 Jan; 76(1):016901. PubMed ID: 23234858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.