These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 38136551)

  • 1. Scaling Exponents of Time Series Data: A Machine Learning Approach.
    Raubitzek S; Corpaci L; Hofer R; Mallinger K
    Entropy (Basel); 2023 Dec; 25(12):. PubMed ID: 38136551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Better than DFA? A Bayesian Method for Estimating the Hurst Exponent in Behavioral Sciences.
    Likens AD; Mangalam M; Wong AY; Charles AC; Mills C
    ArXiv; 2023 Jan; ():. PubMed ID: 36748008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between Continuum of Hurst Exponents of Noise-like Time Series and the Cantor Set.
    Mariani MC; Kubin W; Asante PK; Guthrie JA; Tweneboah OK
    Entropy (Basel); 2021 Nov; 23(11):. PubMed ID: 34828203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifractality approach of a generalized Shannon index in financial time series.
    Abril-Bermúdez FS; Trinidad-Segovia JE; Sánchez-Granero MA; Quimbay-Herrera CJ
    PLoS One; 2024; 19(6):e0303252. PubMed ID: 38905275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationships of exponents in two-dimensional multifractal detrended fluctuation analysis.
    Zhou Y; Leung Y; Yu ZG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012921. PubMed ID: 23410418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fractional Brownian motion with random Hurst exponent: Accelerating diffusion and persistence transitions.
    Balcerek M; Burnecki K; Thapa S; Wyłomańska A; Chechkin A
    Chaos; 2022 Sep; 32(9):093114. PubMed ID: 36182362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian estimation of self-similarity exponent.
    Makarava N; Benmehdi S; Holschneider M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 1):021109. PubMed ID: 21928951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying the degree of persistence in random amoeboid motion based on the Hurst exponent of fractional Brownian motion.
    Makarava N; Menz S; Theves M; Huisinga W; Beta C; Holschneider M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042703. PubMed ID: 25375519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Memory effects in fractional Brownian motion with Hurst exponent H<1/3.
    Bologna M; Vanni F; Krokhin A; Grigolini P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):020102. PubMed ID: 20866763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient estimator of Hurst exponent through an autoregressive model with an order selected by data induction.
    Chang YC
    Biomed Mater Eng; 2014; 24(6):3557-68. PubMed ID: 25227069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Hurst exponent estimator based on autoregressive power spectrum estimation with order selection.
    Chang YC; Lai LC; Chen LH; Chang CM; Chueh CC
    Biomed Mater Eng; 2014; 24(1):1041-51. PubMed ID: 24211995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arbitrary-order Hilbert spectral analysis for time series possessing scaling statistics: comparison study with detrended fluctuation analysis and wavelet leaders.
    Huang YX; Schmitt FG; Hermand JP; Gagne Y; Lu ZM; Liu YL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016208. PubMed ID: 21867274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinguishing between fractional Brownian motion with random and constant Hurst exponent using sample autocovariance-based statistics.
    Grzesiek A; Gajda J; Thapa S; Wyłomańska A
    Chaos; 2024 Apr; 34(4):. PubMed ID: 38668586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaling range of power laws that originate from fluctuation analysis.
    Grech D; Mazur Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052809. PubMed ID: 23767586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the Validity of Detrended Fluctuation Analysis at Short Scales.
    Carpena P; Gómez-Extremera M; Bernaola-Galván PA
    Entropy (Basel); 2021 Dec; 24(1):. PubMed ID: 35052087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rectified brownian transport in corrugated channels: Fractional brownian motion and Lévy flights.
    Ai BQ; Shao ZG; Zhong WR
    J Chem Phys; 2012 Nov; 137(17):174101. PubMed ID: 23145711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consistency of detrended fluctuation analysis.
    Løvsletten O
    Phys Rev E; 2017 Jul; 96(1-1):012141. PubMed ID: 29347071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homology groups of embedded fractional Brownian motion.
    Masoomy H; Tajik S; Movahed SMS
    Phys Rev E; 2022 Dec; 106(6-1):064115. PubMed ID: 36671107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining Measures of Signal Complexity and Machine Learning for Time Series Analyis: A Review.
    Raubitzek S; Neubauer T
    Entropy (Basel); 2021 Dec; 23(12):. PubMed ID: 34945978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in the Hurst exponent of heartbeat intervals during physical activity.
    Martinis M; Knezević A; Krstacić G; Vargović E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jul; 70(1 Pt 1):012903. PubMed ID: 15324105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.