These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 38136583)
1. Improved Physiochemical Properties of Chitosan@PCL Nerve Conduits by Natural Molecule Crosslinking. Bianchini M; Zinno C; Micera S; Redolfi Riva E Biomolecules; 2023 Nov; 13(12):. PubMed ID: 38136583 [TBL] [Abstract][Full Text] [Related]
2. Nerve conduits based on immobilization of nerve growth factor onto modified chitosan by using genipin as a crosslinking agent. Yang Y; Zhao W; He J; Zhao Y; Ding F; Gu X Eur J Pharm Biopharm; 2011 Nov; 79(3):519-25. PubMed ID: 21736941 [TBL] [Abstract][Full Text] [Related]
3. A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo. Huang L; Zhu L; Shi X; Xia B; Liu Z; Zhu S; Yang Y; Ma T; Cheng P; Luo K; Huang J; Luo Z Acta Biomater; 2018 Mar; 68():223-236. PubMed ID: 29274478 [TBL] [Abstract][Full Text] [Related]
4. Genipin-Cross-Linked Chitosan Nerve Conduits Containing TNF-α Inhibitors for Peripheral Nerve Repair. Zhang L; Zhao W; Niu C; Zhou Y; Shi H; Wang Y; Yang Y; Tang X Ann Biomed Eng; 2018 Jul; 46(7):1013-1025. PubMed ID: 29603044 [TBL] [Abstract][Full Text] [Related]
5. The Use of Genipin as an Effective, Biocompatible, Anti-Inflammatory Cross-Linking Method for Nerve Guidance Conduits. Kočí Z; Sridharan R; Hibbitts AJ; Kneafsey SL; Kearney CJ; O'Brien FJ Adv Biosyst; 2020 Mar; 4(3):e1900212. PubMed ID: 32293152 [TBL] [Abstract][Full Text] [Related]
6. Mechanical properties and permeability of porous chitosan-poly(p-dioxanone)/silk fibroin conduits used for peripheral nerve repair. Wu H; Zhang J; Luo Y; Wan Y; Sun S J Mech Behav Biomed Mater; 2015 Oct; 50():192-205. PubMed ID: 26143352 [TBL] [Abstract][Full Text] [Related]
7. Additive manufacturing of hydroxyapatite-chitosan-genipin composite scaffolds for bone tissue engineering applications. Zafeiris K; Brasinika D; Karatza A; Koumoulos E; Karoussis IK; Kyriakidou K; Charitidis CA Mater Sci Eng C Mater Biol Appl; 2021 Feb; 119():111639. PubMed ID: 33321677 [TBL] [Abstract][Full Text] [Related]
8. Genipin-treated chitosan nanofibers as a novel scaffold for nerve guidance channel design. Lau YT; Kwok LF; Tam KW; Chan YS; Shum DK; Shea GK Colloids Surf B Biointerfaces; 2018 Feb; 162():126-134. PubMed ID: 29190463 [TBL] [Abstract][Full Text] [Related]
9. Genipin-crosslinked silk fibroin/hydroxybutyl chitosan nanofibrous scaffolds for tissue-engineering application. Zhang K; Qian Y; Wang H; Fan L; Huang C; Yin A; Mo X J Biomed Mater Res A; 2010 Dec; 95(3):870-81. PubMed ID: 20824649 [TBL] [Abstract][Full Text] [Related]
10. Sciatic nerve regeneration in rats by a promising electrospun collagen/poly(ε-caprolactone) nerve conduit with tailored degradation rate. Yu W; Zhao W; Zhu C; Zhang X; Ye D; Zhang W; Zhou Y; Jiang X; Zhang Z BMC Neurosci; 2011 Jul; 12():68. PubMed ID: 21756368 [TBL] [Abstract][Full Text] [Related]
11. New designed nerve conduits with a porous ionic cross-linked alginate/chitisan structure for nerve regeneration. Chaw JR; Liu HW; Shih YC; Huang CC Biomed Mater Eng; 2015; 26 Suppl 1():S95-102. PubMed ID: 26406097 [TBL] [Abstract][Full Text] [Related]
12. Crosslinking of hybrid scaffolds produced from collagen and chitosan. Perez-Puyana V; Jiménez-Rosado M; Romero A; Guerrero A Int J Biol Macromol; 2019 Oct; 139():262-269. PubMed ID: 31374271 [TBL] [Abstract][Full Text] [Related]
13. Preparation, characterization, and evaluation of genipin crosslinked chitosan/gelatin three-dimensional scaffolds for liver tissue engineering applications. Zhang Y; Wang QS; Yan K; Qi Y; Wang GF; Cui YL J Biomed Mater Res A; 2016 Aug; 104(8):1863-70. PubMed ID: 27027247 [TBL] [Abstract][Full Text] [Related]
14. [The preparation and evaluation of tissue inducible nerve guide conduit]. Zhao H; Liu X; Ge B; Guo C; Zhen P Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Apr; 29(2):315-22. PubMed ID: 22616182 [TBL] [Abstract][Full Text] [Related]
15. The effect of pulse-released nerve growth factor from genipin-crosslinked gelatin in schwann cell-seeded polycaprolactone conduits on large-gap peripheral nerve regeneration. Chang CJ Tissue Eng Part A; 2009 Mar; 15(3):547-57. PubMed ID: 18925830 [TBL] [Abstract][Full Text] [Related]
16. Genipin crosslinked chitosan/PEO nanofibrous scaffolds exhibiting an improved microenvironment for the regeneration of articular cartilage. Ching KY; Andriotis O; Sengers B; Stolz M J Biomater Appl; 2021 Sep; 36(3):503-516. PubMed ID: 33730922 [TBL] [Abstract][Full Text] [Related]
17. Development of genipin-crosslinked and fucoidan-adsorbed nano-hydroxyapatite/hydroxypropyl chitosan composite scaffolds for bone tissue engineering. Lu HT; Lu TW; Chen CH; Mi FL Int J Biol Macromol; 2019 May; 128():973-984. PubMed ID: 30738901 [TBL] [Abstract][Full Text] [Related]
18. Physical properties imparted by genipin to chitosan for tissue regeneration with human stem cells: A review. Muzzarelli RA; El Mehtedi M; Bottegoni C; Gigante A Int J Biol Macromol; 2016 Dec; 93(Pt B):1366-1381. PubMed ID: 27106590 [TBL] [Abstract][Full Text] [Related]
19. Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Frohbergh ME; Katsman A; Botta GP; Lazarovici P; Schauer CL; Wegst UG; Lelkes PI Biomaterials; 2012 Dec; 33(36):9167-78. PubMed ID: 23022346 [TBL] [Abstract][Full Text] [Related]
20. Fabrication and characterization of chitosan/OGP coated porous poly(ε-caprolactone) scaffold for bone tissue engineering. Cui Z; Lin L; Si J; Luo Y; Wang Q; Lin Y; Wang X; Chen W J Biomater Sci Polym Ed; 2017 Jun; 28(9):826-845. PubMed ID: 28278041 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]