These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 38137050)

  • 21. PSP-GNM: Predicting Protein Stability Changes upon Point Mutations with a Gaussian Network Model.
    Mishra SK
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142614
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of computational methods for predicting the effects of missense mutations in human cancers.
    Gnad F; Baucom A; Mukhyala K; Manning G; Zhang Z
    BMC Genomics; 2013; 14 Suppl 3(Suppl 3):S7. PubMed ID: 23819521
    [TBL] [Abstract][Full Text] [Related]  

  • 23. News from the protein mutability landscape.
    Hecht M; Bromberg Y; Rost B
    J Mol Biol; 2013 Nov; 425(21):3937-48. PubMed ID: 23896297
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stability Effects of Protein Mutations: The Role of Long-Range Contacts.
    Bigman LS; Levy Y
    J Phys Chem B; 2018 Dec; 122(49):11450-11459. PubMed ID: 30198717
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correlating protein function and stability through the analysis of single amino acid substitutions.
    Bromberg Y; Rost B
    BMC Bioinformatics; 2009 Aug; 10 Suppl 8(Suppl 8):S8. PubMed ID: 19758472
    [TBL] [Abstract][Full Text] [Related]  

  • 26. INPS: predicting the impact of non-synonymous variations on protein stability from sequence.
    Fariselli P; Martelli PL; Savojardo C; Casadio R
    Bioinformatics; 2015 Sep; 31(17):2816-21. PubMed ID: 25957347
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational approaches for predicting mutant protein stability.
    Kulshreshtha S; Chaudhary V; Goswami GK; Mathur N
    J Comput Aided Mol Des; 2016 May; 30(5):401-12. PubMed ID: 27160393
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A review study: Computational techniques for expecting the impact of non-synonymous single nucleotide variants in human diseases.
    Hassan MS; Shaalan AA; Dessouky MI; Abdelnaiem AE; ElHefnawi M
    Gene; 2019 Jan; 680():20-33. PubMed ID: 30240882
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of mutation-induced protein stability changes based on the geometric representations learned by a self-supervised method.
    Li SS; Liu ZM; Li J; Ma YB; Dong ZY; Hou JW; Shen FJ; Wang WB; Li QM; Su JG
    BMC Bioinformatics; 2024 Aug; 25(1):282. PubMed ID: 39198740
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PON-Tm: A Sequence-Based Method for Prediction of Missense Mutation Effects on Protein Thermal Stability Changes.
    Kuang J; Zhao Z; Yang Y; Yan W
    Int J Mol Sci; 2024 Jul; 25(15):. PubMed ID: 39125949
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Human-readable rule generator for integrating amino scid sequence information and stability of mutant proteins.
    Huang LT; Lai LF; Gromiha MM
    IEEE/ACM Trans Comput Biol Bioinform; 2010; 7(4):681-7. PubMed ID: 21030735
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MAESTRO--multi agent stability prediction upon point mutations.
    Laimer J; Hofer H; Fritz M; Wegenkittl S; Lackner P
    BMC Bioinformatics; 2015 Apr; 16():116. PubMed ID: 25885774
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evolution- and structure-based computational strategy reveals the impact of deleterious missense mutations on MODY 2 (maturity-onset diabetes of the young, type 2).
    George DC; Chakraborty C; Haneef SA; Nagasundaram N; Chen L; Zhu H
    Theranostics; 2014; 4(4):366-85. PubMed ID: 24578721
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A fast and precise approach for computational saturation mutagenesis and its experimental validation by using an artificial (βα)8-barrel protein.
    Fischer A; Seitz T; Lochner A; Sterner R; Merkl R; Bocola M
    Chembiochem; 2011 Jul; 12(10):1544-50. PubMed ID: 21626637
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information.
    Capriotti E; Calabrese R; Casadio R
    Bioinformatics; 2006 Nov; 22(22):2729-34. PubMed ID: 16895930
    [TBL] [Abstract][Full Text] [Related]  

  • 36. STRUM: structure-based prediction of protein stability changes upon single-point mutation.
    Quan L; Lv Q; Zhang Y
    Bioinformatics; 2016 Oct; 32(19):2936-46. PubMed ID: 27318206
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting the Effect of Mutations on Protein Folding and Protein-Protein Interactions.
    Strokach A; Corbi-Verge C; Teyra J; Kim PM
    Methods Mol Biol; 2019; 1851():1-17. PubMed ID: 30298389
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting protein residue-residue contacts using random forests and deep networks.
    Luttrell J; Liu T; Zhang C; Wang Z
    BMC Bioinformatics; 2019 Mar; 20(Suppl 2):100. PubMed ID: 30871477
    [TBL] [Abstract][Full Text] [Related]  

  • 39. EASE-MM: Sequence-Based Prediction of Mutation-Induced Stability Changes with Feature-Based Multiple Models.
    Folkman L; Stantic B; Sattar A; Zhou Y
    J Mol Biol; 2016 Mar; 428(6):1394-1405. PubMed ID: 26804571
    [TBL] [Abstract][Full Text] [Related]  

  • 40. FireProtDB: database of manually curated protein stability data.
    Stourac J; Dubrava J; Musil M; Horackova J; Damborsky J; Mazurenko S; Bednar D
    Nucleic Acids Res; 2021 Jan; 49(D1):D319-D324. PubMed ID: 33166383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.