BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 38137407)

  • 1. An Overview on Lipid Droplets Accumulation as Novel Target for Acute Myeloid Leukemia Therapy.
    Nisticò C; Chiarella E
    Biomedicines; 2023 Nov; 11(12):. PubMed ID: 38137407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hepatic lipid droplets: A balancing act between energy storage and metabolic dysfunction in NAFLD.
    Mashek DG
    Mol Metab; 2021 Aug; 50():101115. PubMed ID: 33186758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of bone marrow microenvironment (BMM) cells in acute myeloid leukemia (AML) progression: immune checkpoints, metabolic checkpoints, and signaling pathways.
    Bakhtiyari M; Liaghat M; Aziziyan F; Shapourian H; Yahyazadeh S; Alipour M; Shahveh S; Maleki-Sheikhabadi F; Halimi H; Forghaniesfidvajani R; Zalpoor H; Nabi-Afjadi M; Pornour M
    Cell Commun Signal; 2023 Sep; 21(1):252. PubMed ID: 37735675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cancer cells employ lipid droplets to survive toxic stress.
    Kostecka LG; Mendez S; Li M; Khare P; Zhang C; Le A; Amend SR; Pienta KJ
    Prostate; 2024 May; 84(7):644-655. PubMed ID: 38409853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism in acute myeloid leukemia: mechanistic insights and therapeutic targets.
    Mishra SK; Millman SE; Zhang L
    Blood; 2023 Mar; 141(10):1119-1135. PubMed ID: 36548959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of the bone marrow niche in hematopoiesis, leukemogenesis, and chemotherapy resistance in acute myeloid leukemia.
    Wang A; Zhong H
    Hematology; 2018 Dec; 23(10):729-739. PubMed ID: 29902132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid metabolism in cancer progression and therapeutic strategies.
    Fu Y; Zou T; Shen X; Nelson PJ; Li J; Wu C; Yang J; Zheng Y; Bruns C; Zhao Y; Qin L; Dong Q
    MedComm (2020); 2021 Mar; 2(1):27-59. PubMed ID: 34766135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable Isotope Labeling Highlights Enhanced Fatty Acid and Lipid Metabolism in Human Acute Myeloid Leukemia.
    Stuani L; Riols F; Millard P; Sabatier M; Batut A; Saland E; Viars F; Tonini L; Zaghdoudi S; Linares LK; Portais JC; Sarry JE; Bertrand-Michel J
    Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30366412
    [No Abstract]   [Full Text] [Related]  

  • 9. A Role for the Bone Marrow Microenvironment in Drug Resistance of Acute Myeloid Leukemia.
    Bolandi SM; Pakjoo M; Beigi P; Kiani M; Allahgholipour A; Goudarzi N; Khorashad JS; Eiring AM
    Cells; 2021 Oct; 10(11):. PubMed ID: 34831055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting of Mevalonate-Isoprenoid Pathway in Acute Myeloid Leukemia Cells by Bisphosphonate Drugs.
    Chiarella E; Nisticò C; Di Vito A; Morrone HL; Mesuraca M
    Biomedicines; 2022 May; 10(5):. PubMed ID: 35625883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting Lactate Metabolism by Inhibiting MCT1 or MCT4 Impairs Leukemic Cell Proliferation, Induces Two Different Related Death-Pathways and Increases Chemotherapeutic Sensitivity of Acute Myeloid Leukemia Cells.
    Saulle E; Spinello I; Quaranta MT; Pasquini L; Pelosi E; Iorio E; Castelli G; Chirico M; Pisanu ME; Ottone T; Voso MT; Testa U; Labbaye C
    Front Oncol; 2020; 10():621458. PubMed ID: 33614502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chenodeoxycholic acid suppresses AML progression through promoting lipid peroxidation via ROS/p38 MAPK/DGAT1 pathway and inhibiting M2 macrophage polarization.
    Liu J; Wei Y; Jia W; Can C; Wang R; Yang X; Gu C; Liu F; Ji C; Ma D
    Redox Biol; 2022 Oct; 56():102452. PubMed ID: 36084349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute myeloid leukemia stem cell markers in prognosis and targeted therapy: potential impact of BMI-1, TIM-3 and CLL-1.
    Darwish NH; Sudha T; Godugu K; Elbaz O; Abdelghaffar HA; Hassan EE; Mousa SA
    Oncotarget; 2016 Sep; 7(36):57811-57820. PubMed ID: 27506934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A potential area of use for immune checkpoint inhibitors: Targeting bone marrow microenvironment in acute myeloid leukemia.
    Aru B; Pehlivanoğlu C; Dal Z; Dereli-Çalışkan NN; Gürlü E; Yanıkkaya-Demirel G
    Front Immunol; 2023; 14():1108200. PubMed ID: 36742324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid droplets as metabolic determinants for stemness and chemoresistance in cancer.
    Royo-García A; Courtois S; Parejo-Alonso B; Espiau-Romera P; Sancho P
    World J Stem Cells; 2021 Sep; 13(9):1307-1317. PubMed ID: 34630864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resistance to energy metabolism - targeted therapy of AML cells residual in the bone marrow microenvironment.
    Tabe Y; Konopleva M
    Cancer Drug Resist; 2023; 6(1):138-150. PubMed ID: 37065866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lysine-Specific Demethylase 1A as a Promising Target in Acute Myeloid Leukemia.
    Magliulo D; Bernardi R; Messina S
    Front Oncol; 2018; 8():255. PubMed ID: 30073149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Energy metabolism of acute myeloid leukemia cells in the bone marrow microenvironment].
    Tabe Y
    Rinsho Ketsueki; 2022; 63(9):1046-1051. PubMed ID: 36198528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A distinct lipid metabolism signature of acute myeloid leukemia with prognostic value.
    Li D; Liang J; Yang W; Guo W; Song W; Zhang W; Wu X; He B
    Front Oncol; 2022; 12():876981. PubMed ID: 35957912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of synthetic lipid droplets in metabolic diseases.
    Zhao P; Zhao Z; Yu Z; Chen L; Jin Y; Wu J; Ren Z
    Clin Transl Med; 2023 Nov; 13(11):e1441. PubMed ID: 37997538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.