These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38137851)

  • 1. Effect of Video Camera Angle on the Detection of Compensatory Movements during Motion Observation.
    Kato N; Fujino Y
    Life (Basel); 2023 Nov; 13(12):. PubMed ID: 38137851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurones in cat parastriate cortex sensitive to the direction of motion in three-dimensional space.
    Cynader M; Regan D
    J Physiol; 1978 Jan; 274():549-69. PubMed ID: 625008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superposition of independent units of coordination during pointing movements involving the trunk with and without visual feedback.
    Pigeon P; Yahia LH; Mitnitski AB; Feldman AG
    Exp Brain Res; 2000 Apr; 131(3):336-49. PubMed ID: 10789948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recruitment and sequencing of different degrees of freedom during pointing movements involving the trunk in healthy and hemiparetic subjects.
    Archambault P; Pigeon P; Feldman AG; Levin MF
    Exp Brain Res; 1999 May; 126(1):55-67. PubMed ID: 10333007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of compensatory movements between body-powered and myoelectric prosthesis users during activities of daily living.
    Engdahl SM; Lee C; Gates DH
    Clin Biomech (Bristol, Avon); 2022 Jul; 97():105713. PubMed ID: 35809535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optokinetic eye movements elicited by radial optic flow in the macaque monkey.
    Lappe M; Pekel M; Hoffmann KP
    J Neurophysiol; 1998 Mar; 79(3):1461-80. PubMed ID: 9497425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accuracy and repeatability of joint angles measured using a single camera markerless motion capture system.
    Schmitz A; Ye M; Shapiro R; Yang R; Noehren B
    J Biomech; 2014 Jan; 47(2):587-91. PubMed ID: 24315287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic measurement of touch and release angles of the fetlock joint for lameness detection in dairy cattle using vision techniques.
    Pluk A; Bahr C; Poursaberi A; Maertens W; van Nuffel A; Berckmans D
    J Dairy Sci; 2012 Apr; 95(4):1738-48. PubMed ID: 22459822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Common Movement Patterns of the Jump Shot While Increasing the Distance from the Basket in Elite Basketball Players.
    Podmenik N; Supej M; Debevec H; Erčulj F
    J Hum Kinet; 2021 Mar; 78():29-39. PubMed ID: 34025861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viewpoint-invariant exercise repetition counting.
    Hsu YC; Efstratios T; Tsui KL
    Health Inf Sci Syst; 2024 Dec; 12(1):1. PubMed ID: 38045021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eye movement responses to linear head motion in the squirrel monkey. II. Visual-vestibular interactions and kinematic considerations.
    Paige GD; Tomko DL
    J Neurophysiol; 1991 May; 65(5):1183-96. PubMed ID: 1869912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motion-in-depth effects on interceptive timing errors in an immersive environment.
    López-Moliner J; de la Malla C
    Sci Rep; 2021 Nov; 11(1):21961. PubMed ID: 34754000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motion-capture Analysis of Mice Using a Video Recorded on an iPhone Camera.
    Nakamichi R; Asahara H
    Bio Protoc; 2022 Nov; 12(21):. PubMed ID: 36505026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interference effect of observed human movement on action is due to velocity profile of biological motion.
    Kilner J; Hamilton AF; Blakemore SJ
    Soc Neurosci; 2007; 2(3-4):158-66. PubMed ID: 18633814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the Feasibility of Computer Vision for Detecting Post-Stroke Compensatory Movements.
    Lin HP; Zhao L; Woolley D; Zhang X; Cheng HJ; Liang W; Kuah C; Plunkett T; Chua K; Zhang L; Wenderoth N
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting compensatory movements of stroke survivors using pressure distribution data and machine learning algorithms.
    Cai S; Li G; Zhang X; Huang S; Zheng H; Ma K; Xie L
    J Neuroeng Rehabil; 2019 Nov; 16(1):131. PubMed ID: 31684970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A real-time algorithm for the detection of compensatory movements during reaching.
    Averell E; Knox D; van Wijck F
    J Rehabil Assist Technol Eng; 2022; 9():20556683221117085. PubMed ID: 36082203
    [No Abstract]   [Full Text] [Related]  

  • 18. Gaze direction effects on perceptions of upper limb kinesthetic coordinate system axes.
    Darling WG; Hondzinski JM; Harper JG
    Exp Brain Res; 2000 Dec; 135(3):360-72. PubMed ID: 11146815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agreement between Azure Kinect and Marker-Based Motion Analysis during Functional Movements: A Feasibility Study.
    Jo S; Song S; Kim J; Song C
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Usefulness of 2D Video Analysis for Evaluation of Shoulder Range of Motion during Upper Limb Exercise in Patients with Psychiatric Disorders.
    Tanioka R; Ito H; Takase K; Kai Y; Sugawara K; Tanioka T; Locsin R; Tomotake M
    J Med Invest; 2022; 69(1.2):70-79. PubMed ID: 35466149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.