BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 38137936)

  • 1. Pilot Lipidomics Study of Copepods: Investigation of Potential Lipid-Based Biomarkers for the Early Detection and Quantification of the Biological Effects of Climate Change on the Oceanic Food Chain.
    Wood PL; Wood MD; Kunigelis SC
    Life (Basel); 2023 Dec; 13(12):. PubMed ID: 38137936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular and microscopic evidence of viruses in marine copepods.
    Dunlap DS; Ng TF; Rosario K; Barbosa JG; Greco AM; Breitbart M; Hewson I
    Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1375-80. PubMed ID: 23297243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anthropogenic climate change impacts on copepod trait biogeography.
    McGinty N; Barton AD; Record NR; Finkel ZV; Johns DG; Stock CA; Irwin AJ
    Glob Chang Biol; 2021 Apr; 27(7):1431-1442. PubMed ID: 33347685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensory-Motor Systems of Copepods involved in their Escape from Suction Feeding.
    Yen J; Murphy DW; Fan L; Webster DR
    Integr Comp Biol; 2015 Jul; 55(1):121-33. PubMed ID: 26015485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predation risk alters life history strategies in an oceanic copepod.
    Kvile KØ; Altin D; Thommesen L; Titelman J
    Ecology; 2021 Jan; 102(1):e03214. PubMed ID: 33001438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Starvation reduces thermal limits of the widespread copepod
    Rueda Moreno G; Sasaki MC
    Ecol Evol; 2023 Oct; 13(10):e10586. PubMed ID: 37799447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of ocean acidification on copepods.
    Wang M; Jeong CB; Lee YH; Lee JS
    Aquat Toxicol; 2018 Mar; 196():17-24. PubMed ID: 29324394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-decadal range changes vs. thermal adaptation for north east Atlantic oceanic copepods in the face of climate change.
    Hinder SL; Gravenor MB; Edwards M; Ostle C; Bodger OG; Lee PL; Walne AW; Hays GC
    Glob Chang Biol; 2014 Jan; 20(1):140-6. PubMed ID: 24323534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional profiling of reproductive development, lipid storage and molting throughout the last juvenile stage of the marine copepod Calanus finmarchicus.
    Tarrant AM; Baumgartner MF; Hansen BH; Altin D; Nordtug T; Olsen AJ
    Front Zool; 2014; 11(1):91. PubMed ID: 25568661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between specific dynamic action and protein deposition in calanoid copepods.
    Thor P
    J Exp Mar Biol Ecol; 2000 Mar; 245(2):171-182. PubMed ID: 10699208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response of marine copepods to a changing tropical environment: winners, losers and implications.
    Chew LL; Chong VC
    PeerJ; 2016; 4():e2052. PubMed ID: 27257540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of ocean warming on the fatty acid and epigenetic profile of Acartia tonsa: A multigenerational approach.
    Janssens L; Asselman J; De Troch M
    Mar Pollut Bull; 2024 Apr; 201():116265. PubMed ID: 38493676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cumulative Impacts of Oil Pollution, Ocean Warming, and Coastal Freshening on the Feeding of Arctic Copepods.
    Rist S; Rask S; Ntinou IV; Varpe Ø; Lindegren M; Ugwu K; Larsson M; Sjöberg V; Nielsen TG
    Environ Sci Technol; 2024 Feb; ():. PubMed ID: 38321867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Checklist of copepods from Gulf of Nicoya, Coronado Bay and Golfo Dulce, Pacific coast of Costa Rica, with comments on their distribution.
    Morales-Ramírez A
    Rev Biol Trop; 1996 Dec; 44 Suppl 3():103-13. PubMed ID: 9393648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Minderoo-Monaco Commission on Plastics and Human Health.
    Landrigan PJ; Raps H; Cropper M; Bald C; Brunner M; Canonizado EM; Charles D; Chiles TC; Donohue MJ; Enck J; Fenichel P; Fleming LE; Ferrier-Pages C; Fordham R; Gozt A; Griffin C; Hahn ME; Haryanto B; Hixson R; Ianelli H; James BD; Kumar P; Laborde A; Law KL; Martin K; Mu J; Mulders Y; Mustapha A; Niu J; Pahl S; Park Y; Pedrotti ML; Pitt JA; Ruchirawat M; Seewoo BJ; Spring M; Stegeman JJ; Suk W; Symeonides C; Takada H; Thompson RC; Vicini A; Wang Z; Whitman E; Wirth D; Wolff M; Yousuf AK; Dunlop S
    Ann Glob Health; 2023; 89(1):23. PubMed ID: 36969097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climate, copepods and seabirds in the boreal Northeast Atlantic - current state and future outlook.
    Frederiksen M; Anker-Nilssen T; Beaugrand G; Wanless S
    Glob Chang Biol; 2013 Feb; 19(2):364-72. PubMed ID: 23504776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Projected impacts of 21st century climate change on diapause in Calanus finmarchicus.
    Wilson RJ; Banas NS; Heath MR; Speirs DC
    Glob Chang Biol; 2016 Oct; 22(10):3332-40. PubMed ID: 26990351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene expression of GST and CYP330A1 in lipid-rich and lipid-poor female Calanus finmarchicus (Copepoda: Crustacea) exposed to dispersed oil.
    Hansen BH; Nordtug T; Altin D; Booth A; Hessen KM; Olsen AJ
    J Toxicol Environ Health A; 2009; 72(3-4):131-9. PubMed ID: 19184728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental temperature, more than long-term evolution, defines thermal tolerance in an estuarine copepod.
    Ashlock L; Darwin C; Crooker J; deMayo J; Dam HG; Pespeni M
    Ecol Evol; 2024 Feb; 14(2):e10995. PubMed ID: 38380068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.