BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 38138131)

  • 21. Harnessing a methane-fueled, sediment-free mixed microbial community for utilization of distributed sources of natural gas.
    Marlow JJ; Kumar A; Enalls BC; Reynard LM; Tuross N; Stephanopoulos G; Girguis P
    Biotechnol Bioeng; 2018 Jun; 115(6):1450-1464. PubMed ID: 29460958
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Global Molecular Analyses of Methane Metabolism in Methanotrophic Alphaproteobacterium, Methylosinus trichosporium OB3b. Part I: Transcriptomic Study.
    Matsen JB; Yang S; Stein LY; Beck D; Kalyuzhnaya MG
    Front Microbiol; 2013; 4():40. PubMed ID: 23565111
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent advances toward the bioconversion of methane and methanol in synthetic methylotrophs.
    Gregory GJ; Bennett RK; Papoutsakis ET
    Metab Eng; 2022 May; 71():99-116. PubMed ID: 34547453
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational Modeling of Human Metabolism and Its Application to Systems Biomedicine.
    Aurich MK; Thiele I
    Methods Mol Biol; 2016; 1386():253-81. PubMed ID: 26677187
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monodeuterated Methane, an Isotopic Tool To Assess Biological Methane Metabolism Rates.
    Marlow JJ; Steele JA; Ziebis W; Scheller S; Case D; Reynard LM; Orphan VJ
    mSphere; 2017; 2(4):. PubMed ID: 28861523
    [TBL] [Abstract][Full Text] [Related]  

  • 26. From methane to value-added bioproducts: microbial metabolism, enzymes, and metabolic engineering.
    Weng C; Peng X; Han Y
    Adv Appl Microbiol; 2023; 124():119-146. PubMed ID: 37597946
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly efficient methane biocatalysis revealed in a methanotrophic bacterium.
    Kalyuzhnaya MG; Yang S; Rozova ON; Smalley NE; Clubb J; Lamb A; Gowda GA; Raftery D; Fu Y; Bringel F; Vuilleumier S; Beck DA; Trotsenko YA; Khmelenina VN; Lidstrom ME
    Nat Commun; 2013; 4():2785. PubMed ID: 24302011
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Facultative and obligate methanotrophs how to identify and differentiate them.
    Dedysh SN; Dunfield PF
    Methods Enzymol; 2011; 495():31-44. PubMed ID: 21419913
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel facultative Methylocella strains are active methane consumers at terrestrial natural gas seeps.
    Farhan Ul Haque M; Crombie AT; Murrell JC
    Microbiome; 2019 Oct; 7(1):134. PubMed ID: 31585550
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancement of Nitrous Oxide Emissions in Soil Microbial Consortia via Copper Competition between Proteobacterial Methanotrophs and Denitrifiers.
    Chang J; Kim DD; Semrau JD; Lee JY; Heo H; Gu W; Yoon S
    Appl Environ Microbiol; 2021 Feb; 87(5):e0230120. PubMed ID: 33355098
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Facultative methanotrophy: false leads, true results, and suggestions for future research.
    Semrau JD; DiSpirito AA; Vuilleumier S
    FEMS Microbiol Lett; 2011 Oct; 323(1):1-12. PubMed ID: 21599728
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthetic Methane-Consuming Communities from a Natural Lake Sediment.
    Yu Z; Groom J; Zheng Y; Chistoserdova L; Huang J
    mBio; 2019 Jul; 10(4):. PubMed ID: 31337718
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adapting Macroecology to Microbiology: Using Occupancy Modeling To Assess Functional Profiles across Metagenomes.
    Hilts AS; Hunjan MS; Hug LA
    mSystems; 2021 Dec; 6(6):e0079021. PubMed ID: 34874772
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metagenomic Approaches Unearth Methanotroph Phylogenetic and Metabolic Diversity.
    Smith GJ; Wrighton KC
    Curr Issues Mol Biol; 2019; 33():57-84. PubMed ID: 31166185
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A pipeline for the reconstruction and evaluation of context-specific human metabolic models at a large-scale.
    Vieira V; Ferreira J; Rocha M
    PLoS Comput Biol; 2022 Jun; 18(6):e1009294. PubMed ID: 35749559
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioconversion of natural gas to liquid fuel: opportunities and challenges.
    Fei Q; Guarnieri MT; Tao L; Laurens LM; Dowe N; Pienkos PT
    Biotechnol Adv; 2014; 32(3):596-614. PubMed ID: 24726715
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microbial consortia including methanotrophs: some benefits of living together.
    Singh R; Ryu J; Kim SW
    J Microbiol; 2019 Nov; 57(11):939-952. PubMed ID: 31659683
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A methanotrophic bacterium to enable methane removal for climate mitigation.
    He L; Groom JD; Wilson EH; Fernandez J; Konopka MC; Beck DAC; Lidstrom ME
    Proc Natl Acad Sci U S A; 2023 Aug; 120(35):e2310046120. PubMed ID: 37603746
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Elucidation of dominant energy metabolic pathways of methane, sulphur and nitrogen in respect to mangrove-degradation for climate change mitigation.
    Padhy SR; Bhattacharyya P; Dash PK; Nayak SK; Parida SP; Baig MJ; Mohapatra T
    J Environ Manage; 2022 Feb; 303():114151. PubMed ID: 34844054
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prospecting the significance of methane-utilizing bacteria in agriculture.
    Rani V; Prasanna R; Kaushik R
    World J Microbiol Biotechnol; 2022 Aug; 38(10):176. PubMed ID: 35922575
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.