These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 38138131)

  • 61. The characteristics and comparative analysis of methanotrophs reveal genomic insights into Methylomicrobium sp. enriched from marine sediments.
    Yu WJ; Lee JW; Nguyen NL; Rhee SK; Park SJ
    Syst Appl Microbiol; 2018 Sep; 41(5):415-426. PubMed ID: 29887392
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: A review.
    Zhu J; Wang Q; Yuan M; Tan GA; Sun F; Wang C; Wu W; Lee PH
    Water Res; 2016 Mar; 90():203-215. PubMed ID: 26734780
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Thermophilic methane oxidation is widespread in Aotearoa-New Zealand geothermal fields.
    Houghton KM; Carere CR; Stott MB; McDonald IR
    Front Microbiol; 2023; 14():1253773. PubMed ID: 37720161
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Genome-guided prediction of acid resistance mechanisms in acidophilic methanotrophs of phylogenetically deep-rooted Verrucomicrobia isolated from geothermal environments.
    Neira G; Vergara E; Holmes DS
    Front Microbiol; 2022; 13():900531. PubMed ID: 36212841
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Constraint-Based Reconstruction and Analyses of Metabolic Models: Open-Source Python Tools and Applications to Cancer.
    Ng RH; Lee JW; Baloni P; Diener C; Heath JR; Su Y
    Front Oncol; 2022; 12():914594. PubMed ID: 35875150
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Methane as a resource: can the methanotrophs add value?
    Strong PJ; Xie S; Clarke WP
    Environ Sci Technol; 2015 Apr; 49(7):4001-18. PubMed ID: 25723373
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Patterns in wetland microbial community composition and functional gene repertoire associated with methane emissions.
    He S; Malfatti SA; McFarland JW; Anderson FE; Pati A; Huntemann M; Tremblay J; Glavina del Rio T; Waldrop MP; Windham-Myers L; Tringe SG
    mBio; 2015 May; 6(3):e00066-15. PubMed ID: 25991679
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Transcriptomic and Metabolomic Responses to Carbon and Nitrogen Sources in Methylomicrobium album BG8.
    Sugden S; Lazic M; Sauvageau D; Stein LY
    Appl Environ Microbiol; 2021 Jun; 87(13):e0038521. PubMed ID: 33893121
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Lanthanide-dependent cross-feeding of methane-derived carbon is linked by microbial community interactions.
    Krause SM; Johnson T; Samadhi Karunaratne Y; Fu Y; Beck DA; Chistoserdova L; Lidstrom ME
    Proc Natl Acad Sci U S A; 2017 Jan; 114(2):358-363. PubMed ID: 28028242
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Methanotrophic bacteria.
    Hanson RS; Hanson TE
    Microbiol Rev; 1996 Jun; 60(2):439-71. PubMed ID: 8801441
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Integration of Comparative Genomics with Genome-Scale Metabolic Modeling to Investigate Strain-Specific Phenotypical Differences.
    Monk J; Bosi E
    Methods Mol Biol; 2018; 1716():151-175. PubMed ID: 29222753
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Biosensing systems for the detection and quantification of methane gas.
    Poma N; Bonini A; Vivaldi F; Biagini D; Di Luca M; Bottai D; Di Francesco F; Tavanti A
    Appl Microbiol Biotechnol; 2023 Sep; 107(18):5627-5634. PubMed ID: 37486352
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Synthesizing Systems Biology Knowledge from Omics Using Genome-Scale Models.
    Dahal S; Yurkovich JT; Xu H; Palsson BO; Yang L
    Proteomics; 2020 Sep; 20(17-18):e1900282. PubMed ID: 32579720
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Methanotrophy Alleviates Nitrogen Constraint of Carbon Turnover by Rice Root-Associated Microbiomes.
    Cao W; Cai Y; Bao Z; Wang S; Yan X; Jia Z
    Front Microbiol; 2022; 13():885087. PubMed ID: 35663885
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A biochemical framework for anaerobic oxidation of methane driven by Fe(III)-dependent respiration.
    Yan Z; Joshi P; Gorski CA; Ferry JG
    Nat Commun; 2018 Apr; 9(1):1642. PubMed ID: 29691409
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Evidence for methanobactin "Theft" and novel chalkophore production in methanotrophs: impact on methanotrophic-mediated methylmercury degradation.
    Kang-Yun CS; Liang X; Dershwitz P; Gu W; Schepers A; Flatley A; Lichtmannegger J; Zischka H; Zhang L; Lu X; Gu B; Ledesma JC; Pelger DJ; DiSpirito AA; Semrau JD
    ISME J; 2022 Jan; 16(1):211-220. PubMed ID: 34290379
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Metagenomic identification of active methanogens and methanotrophs in serpentinite springs of the Voltri Massif, Italy.
    Brazelton WJ; Thornton CN; Hyer A; Twing KI; Longino AA; Lang SQ; Lilley MD; Früh-Green GL; Schrenk MO
    PeerJ; 2017; 5():e2945. PubMed ID: 28149702
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Thermophilic methanotrophs: in hot pursuit.
    Houghton KM; Carere CR; Stott MB; McDonald IR
    FEMS Microbiol Ecol; 2019 Sep; 95(9):. PubMed ID: 31374570
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Copper in methane oxidation: a review].
    Su Y; Kong JY; Zhang X; Xia FF; He R
    Ying Yong Sheng Tai Xue Bao; 2014 Apr; 25(4):1221-30. PubMed ID: 25011321
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Large-scale biogeography and environmental regulation of methanotrophic bacteria across boreal inland waters.
    Crevecoeur S; Ruiz-González C; Prairie YT; Del Giorgio PA
    Mol Ecol; 2019 Sep; 28(18):4181-4196. PubMed ID: 31479544
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.