These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 38138161)

  • 1. Network Pharmacology Integrated Molecular Docking and Dynamics to Elucidate Saffron Compounds Targeting Human COX-2 Protein.
    Ali A; Wani AB; Malla BA; Poyya J; Dar NJ; Ali F; Ahmad SB; Rehman MU; Nadeem A
    Medicina (Kaunas); 2023 Nov; 59(12):. PubMed ID: 38138161
    [No Abstract]   [Full Text] [Related]  

  • 2. Network pharmacology-based strategic prediction and target identification of apocarotenoids and carotenoids from standardized Kashmir saffron (Crocus sativus L.) extract against polycystic ovary syndrome.
    Tiwari A; Modi SJ; Girme A; Hingorani L
    Medicine (Baltimore); 2023 Aug; 102(32):e34514. PubMed ID: 37565925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is Crocin a Potential Anti-tumor Candidate Targeting Microtubules? Computational Insights From Molecular Docking and Dynamics Simulations.
    Wang Z; Ren J; Jin N; Liu X; Li X
    Front Mol Biosci; 2020; 7():586970. PubMed ID: 33251248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive chemotaxonomic analysis of saffron crocus tepal and stamen samples, as raw materials with potential antidepressant activity.
    Mottaghipisheh J; Mahmoodi Sourestani M; Kiss T; Horváth A; Tóth B; Ayanmanesh M; Khamushi A; Csupor D
    J Pharm Biomed Anal; 2020 May; 184():113183. PubMed ID: 32105944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular docking study and molecular dynamic simulation of human cyclooxygenase-2 (COX-2) with selected eutypoids.
    Taidi L; Maurady A; Britel MR
    J Biomol Struct Dyn; 2022 Feb; 40(3):1189-1204. PubMed ID: 32990169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UGT709G1: a novel uridine diphosphate glycosyltransferase involved in the biosynthesis of picrocrocin, the precursor of safranal in saffron (Crocus sativus).
    Diretto G; Ahrazem O; Rubio-Moraga Á; Fiore A; Sevi F; Argandoña J; Gómez-Gómez L
    New Phytol; 2019 Oct; 224(2):725-740. PubMed ID: 31356694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network pharmacology, molecular docking integrated surface plasmon resonance technology reveals the mechanism of Toujie Quwen Granules against coronavirus disease 2019 pneumonia.
    Ye M; Luo G; Ye D; She M; Sun N; Lu YJ; Zheng J
    Phytomedicine; 2021 May; 85():153401. PubMed ID: 33191068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into cyclooxygenase-2 inhibition by isolated bioactive compounds 3-caffeoyl-4-dihydrocaffeoyl quinic acid and isorhamnetin 3-O-β-D-glucopyranoside from Salicornia herbacea.
    Bahuguna A; Bharadwaj S; Bajpai VK; Shukla S; Won DW; Park I; Na M; Sonwal S; Huh YS; Han YK; Simal-Gandara J; Xiao J; Kim M
    Phytomedicine; 2021 Sep; 90():153638. PubMed ID: 34275700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions of selected cardiovascular active natural compounds with CXCR4 and CXCR7 receptors: a molecular docking, molecular dynamics, and pharmacokinetic/toxicity prediction study.
    Murad HAS; Alqurashi TMA; Hussien MA
    BMC Complement Med Ther; 2022 Feb; 22(1):35. PubMed ID: 35120520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of Effective Therapeutic Molecule from Natural Sources against Coronavirus Protease.
    Fadaka AO; Sibuyi NRS; Martin DR; Klein A; Madiehe A; Meyer M
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro.
    Escribano J; Alonso GL; Coca-Prados M; Fernandez JA
    Cancer Lett; 1996 Feb; 100(1-2):23-30. PubMed ID: 8620447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory effect of saffron, crocin, crocetin, and safranal against adipocyte differentiation in human adipose-derived stem cells.
    Jafari F; Emami SA; Javadi B; Salmasi Z; Tayarani-Najjaran M; Tayarani-Najaran Z
    J Ethnopharmacol; 2022 Aug; 294():115340. PubMed ID: 35551973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Insilico evaluation of phytocompounds from Albizia amara and Phyla nodiflora as cyclooxygenase-2 enzyme inhibitors.
    Loganathan Y; Jain M; Thiyagarajan S; Shanmuganathan S; Mariappan SK; Kizhakedathil MPJ; Saravanakumar T
    Daru; 2021 Dec; 29(2):311-320. PubMed ID: 34415547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting protein tyrosine phosphatase to unravel possible inhibitors for Streptococcus pneumoniae using molecular docking, molecular dynamics simulations coupled with free energy calculations.
    Zaman Z; Khan S; Nouroz F; Farooq U; Urooj A
    Life Sci; 2021 Jan; 264():118621. PubMed ID: 33164832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-guided bioactive profiling and HPLC-DAD fingerprinting of Ukrainian saffron (Crocus sativus stigmas): moving from correlation toward causation.
    Mykhailenko O; Petrikaitė V; Korinek M; El-Shazly M; Chen BH; Yen CH; Hsieh CF; Bezruk I; Dabrišiūtė A; Ivanauskas L; Georgiyants V; Hwang TL
    BMC Complement Med Ther; 2021 Jul; 21(1):203. PubMed ID: 34289850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the Molecular Mechanism of Action of Yinchen Wuling Powder for the Treatment of Hyperlipidemia, Using Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation.
    Ye J; Li L; Hu Z
    Biomed Res Int; 2021; 2021():9965906. PubMed ID: 34746316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the possible molecular targeting mechanism of Saussurea involucrata in the treatment of COVID-19 based on bioinformatics and network pharmacology.
    Zhang D; Wang Z; Li J; Zhu J
    Comput Biol Med; 2022 Jul; 146():105549. PubMed ID: 35751193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative reverse screening approach to identify potential anti-neoplastic targets of saffron functional components and binding mode.
    Bhattacharjee B; Vijayasarathy S; Karunakar P; Chatterjee J
    Asian Pac J Cancer Prev; 2012; 13(11):5605-11. PubMed ID: 23317225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacokinetic Properties of Saffron and its Active Components.
    Hosseini A; Razavi BM; Hosseinzadeh H
    Eur J Drug Metab Pharmacokinet; 2018 Aug; 43(4):383-390. PubMed ID: 29134501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation on penetration of saffron components through lipid bilayer bound to spike protein of SARS-CoV-2 using steered molecular dynamics simulation.
    Kordzadeh A; Ramazani Saadatabadi A; Hadi A
    Heliyon; 2020 Dec; 6(12):e05681. PubMed ID: 33344790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.