These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38138348)

  • 1. Sensitive Detection of Trace Explosives by a Self-Assembled Monolayer Sensor.
    Liu W; Ali W; Liu Y; Li M; Li Z
    Micromachines (Basel); 2023 Nov; 14(12):. PubMed ID: 38138348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of an AIE-Active Flexible Self-Assembled Monolayer Probe for Trace Nitroaromatic Compound Explosive Detection.
    Wang G; Li M; Wei Q; Xiong Y; Li J; Li Z; Tang J; Wei F; Tu H
    ACS Sens; 2021 May; 6(5):1849-1856. PubMed ID: 33827212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An AIE-Active Ultrathin Polymeric Self-Assembled Monolayer Sensor for Trace Volatile Explosive Detection.
    Li M; Xie K; Wang G; Zheng J; Cao Y; Cheng X; Li Z; Wei F; Tu H; Tang J
    Macromol Rapid Commun; 2021 Dec; 42(23):e2100551. PubMed ID: 34610177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active Self-Assembled Monolayer Sensors for Trace Explosive Detection.
    Li M; Chen H; Li S; Wang G; Wei F; Guo X; Tu H
    Langmuir; 2020 Feb; 36(6):1462-1466. PubMed ID: 31986886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tetraphenylethene probe based fluorescent silica nanoparticles for the selective detection of nitroaromatic explosives.
    Nawaz MAH; Meng L; Zhou H; Ren J; Shahzad SA; Hayat A; Yu C
    Anal Methods; 2021 Feb; 13(6):825-831. PubMed ID: 33502411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-covalent functionalization of graphene sheets by pyrene-endcapped tetraphenylethene: Enhanced aggregation-induced emission effect and application in explosive detection.
    Zhang Y; Li H; Wu QY; Gu L
    Front Chem; 2022; 10():970033. PubMed ID: 36034660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Highly Efficient Fluorescent Sensor Based on AIEgen for Detection of Nitrophenolic Explosives.
    Li D; Lv P; Han XW; Jia Z; Zheng M; Feng HT
    Molecules; 2022 Dec; 28(1):. PubMed ID: 36615375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation-Induced Enhanced Emission (AIEE)-Active Conjugated Mesoporous Oligomers (CMOs) with Improved Quantum Yield and Low-Cost Detection of a Trace Amount of Nitroaromatic Explosives.
    Sengottuvelu D; Kachwal V; Raichure P; Raghav T; Laskar IR
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):31875-31886. PubMed ID: 32551484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aggregation-Induced Emission (AIE)-Labeled Cellulose Nanocrystals for the Detection of Nitrophenolic Explosives in Aqueous Solutions.
    Ye X; Wang H; Yu L; Zhou J
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31067707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of 2,4-dinitrotoluene (DNT) as a model system for nitroaromatic compounds via molecularly imprinted short-alkyl-chain SAMs.
    Apodaca DC; Pernites RB; Del Mundo FR; Advincula RC
    Langmuir; 2011 Jun; 27(11):6768-79. PubMed ID: 21534549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of aza-BODIPY as a Nitroaromatic Sensor.
    Sadikogullari BC; Koramaz I; Sütay B; Karagoz B; Özdemir AD
    ACS Omega; 2023 Jul; 8(28):25254-25261. PubMed ID: 37483181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual detection of trace nitroaromatic explosive residue using photoluminescent metallole-containing polymers.
    Toal SJ; Sanchez JC; Dugan RE; Trogler WC
    J Forensic Sci; 2007 Jan; 52(1):79-83. PubMed ID: 17209914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oligomer-coated carbon nanotube chemiresistive sensors for selective detection of nitroaromatic explosives.
    Zhang Y; Xu M; Bunes BR; Wu N; Gross DE; Moore JS; Zang L
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7471-5. PubMed ID: 25823968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic-Inorganic Hybrid Mesoporous Materials as Regenerable Sensing Systems for the Recognition of Nitroaromatic Explosives.
    Sarkar K; Salinas Y; Campos I; Martínez-Máñez R; Marcos MD; Sancenón F; Amorós P
    Chempluschem; 2013 Jul; 78(7):684-694. PubMed ID: 31986617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly ordered binary assembly of silica mesochannels and surfactant micelles for extraction and electrochemical analysis of trace nitroaromatic explosives and pesticides.
    Yan F; He Y; Ding L; Su B
    Anal Chem; 2015 Apr; 87(8):4436-41. PubMed ID: 25815534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polysiloxane-Modified Tetraphenylethene: Synthesis, AIE Properties, and Sensor for Detecting Explosives.
    Li Q; Yang Z; Ren Z; Yan S
    Macromol Rapid Commun; 2016 Nov; 37(21):1772-1779. PubMed ID: 27611625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and fabrication of optical chemical sensor for detection of nitroaromatic explosives based on fluorescence quenching of phenol red immobilized poly(vinyl alcohol) membrane.
    Zarei AR; Ghazanchayi B
    Talanta; 2016 Apr; 150():162-8. PubMed ID: 26838395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual Improvement in Sensitivity and Humidity Tolerance of a NO
    Guo X; Shi Y; Liu P; Ding Y; Du B; Liang C; Niu W; Tan Y; He Y; Chen J; Miao X; Yang X; He Y
    ACS Appl Mater Interfaces; 2023 Jun; 15(23):28358-28369. PubMed ID: 37259980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CH3-π interaction of explosives with cavity of a TPE macrocycle: the key cause for highly selective detection of TNT.
    Feng HT; Wang JH; Zheng YS
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20067-74. PubMed ID: 25319016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescent sensors for nitroaromatic compounds based on monolayer assembly of polycyclic aromatics.
    Zhang S; Lü F; Gao L; Ding L; Fang Y
    Langmuir; 2007 Jan; 23(3):1584-90. PubMed ID: 17241091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.